Re: Beware of NSolve
- To: mathgroup at smc.vnet.net
- Subject: [mg50169] Re: [mg50165] Beware of NSolve
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Wed, 18 Aug 2004 04:34:04 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
On 18 Aug 2004, at 07:20, Carlos Felippa wrote: > Run v. 4.2 on Mac: > > f=5/432 - 11/(27*Sqrt[70]*Sqrt[19 - 1890*x]) + x/(2*Sqrt[38/35 - > 108*x]); > > Solve[f==0,x] returns 2 real roots: > > {{x -> (-171 - 25*Sqrt[105])/30240}, {x -> (-171 + > 25*Sqrt[105])/30240}} > > NSolve[f==0,x] returns 4 real roots: > > {{x -> -0.10481082961146104}, {x -> -0.014126116704662378}, > {x -> 0.002816592895138556}, {x -> 0.0003796126802330315}} > > Roots 1 and 4 are incorrect. (Just plot f) > > Had a similar problem with a quartic 3 months ago. This is a > simpler example. > > > In this case as in many others involving numerical compoutations it is just the question of the working precision. This is just a "fact of life" of numerical mathematics f = 5/432 - 11/(27*Sqrt[70]*Sqrt[19 - 1890*x]) + x/(2*Sqrt[38/35 - 108*x]); NSolve[f == 0, x] Out[25]= {{x -> -0.1048108296114584}, {x -> -0.014126116704662336}, {x -> 0.0028165928951385585}, {x -> 0.0003796126802330329}} but NSolve[f == 0, x, WorkingPrecision -> 100] {{x -> -0.01412611670466236638824490631656833001879549658\ 023713039810018063813686176066910885658666635943993612512\ 76942823094`99.69897000433602}, {x -> 0.00281659289513855686443538250704452049498597277\ 071332087429065682861305223685958504706285683563041231560\ 38847579695`99.69897000433602}} Andrzej Kozlowski Chiba, Japan http://www.mimuw.edu.pl/~akoz/