Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2004
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Beware of NSolve

  • To: mathgroup at smc.vnet.net
  • Subject: [mg50190] Re: Beware of NSolve
  • From: "paul" <paul_tan at aoI.com>
  • Date: Thu, 19 Aug 2004 06:28:31 -0400 (EDT)
  • References: <cfv4e4$8j0$1@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

excellent point, by the way, only 31 units of precision would have been
sufficient too:
In[12]:=
NSolve[f == 0, x, WorkingPrecision -> 31]

Out[12]=
{{x -> -0.01412611670466236638824490631657}, {x ->
0.002816592895138556864435382507045}}

thanks,

"Andrzej Kozlowski" <akoz at mimuw.edu.pl> wrote in message
news:cfv4e4$8j0$1 at smc.vnet.net...
>
> On 18 Aug 2004, at 07:20, Carlos Felippa wrote:
>
> > Run v. 4.2 on Mac:
> >
> > f=5/432 - 11/(27*Sqrt[70]*Sqrt[19 - 1890*x]) + x/(2*Sqrt[38/35 -
> > 108*x]);
> >
> >  Solve[f==0,x]  returns 2 real roots:
> >
> > {{x -> (-171 - 25*Sqrt[105])/30240}, {x -> (-171 +
> > 25*Sqrt[105])/30240}}
> >
> > NSolve[f==0,x]  returns 4 real roots:
> >
> > {{x -> -0.10481082961146104}, {x -> -0.014126116704662378},
> >  {x -> 0.002816592895138556}, {x -> 0.0003796126802330315}}
> >
> > Roots 1 and 4 are incorrect.  (Just plot f)
> >
> > Had a similar problem with a quartic 3 months ago.  This is a
> > simpler example.
> >
> >
> >
> In this case as in many others involving numerical compoutations it is
> just the question of the working precision. This is just a "fact of
> life" of numerical mathematics
>
>
> f = 5/432 - 11/(27*Sqrt[70]*Sqrt[19 - 1890*x]) +
>      x/(2*Sqrt[38/35 - 108*x]);
>
>
> NSolve[f == 0, x]
>
> Out[25]=
> {{x -> -0.1048108296114584},
>    {x -> -0.014126116704662336},
>    {x -> 0.0028165928951385585},
>    {x -> 0.0003796126802330329}}
>
>
> but
>
>
> NSolve[f == 0, x, WorkingPrecision -> 100]
>
>
> {{x -> -0.01412611670466236638824490631656833001879549658\
> 023713039810018063813686176066910885658666635943993612512\
> 76942823094`99.69897000433602},
>    {x -> 0.00281659289513855686443538250704452049498597277\
> 071332087429065682861305223685958504706285683563041231560\
> 38847579695`99.69897000433602}}
>
>
>
>
> Andrzej Kozlowski
> Chiba, Japan
> http://www.mimuw.edu.pl/~akoz/
>


  • Prev by Date: Re: Beware of NSolve
  • Next by Date: Technical Publishing Made Easy with New Wolfram Publicon Software
  • Previous by thread: Re: Re: Beware of NSolve
  • Next by thread: Re: Beware of NSolve