Re: 2^20991011-1
- To: mathgroup at smc.vnet.net
- Subject: [mg45468] Re: [mg45441] 2^20991011-1
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Fri, 9 Jan 2004 05:20:35 -0500 (EST)
- References: <200401072231.RAA10329@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Friedrich Laher wrote: > > how can mathematica do that that fast ( 100 seconds on 2.4GHz Athalon ) > while the following needs almost 100 minutes > #include<stdio.h> > /* > Zahl = 2^20 996 011 - 1 get decimal representation, > but > base 10^9 Zahl, 9 dec. digits codes binary in 32Bit. > > 20 996 011*DekadischerLog(2) = 6 320 429, 100 ... > Zahl > has 6 320 431 dec. digits, so needs 702 271 unsigned long's ( of 32 bit ). > > 20 996 011 bit's are 656 125 *32 + 11, 2^11-1 = 2074 > --------------------- > 1 Stunde 38 Min. 3 Sek > -------------------- > */ > unsigned long Zahl[702271], *DezZeiger; > int main() > { > asm(" > # INITIALISIERUNG > > PUSHL %ebx > MOVD %esp,%mm3; LEA Zahl+4*702271,%esp > > MOVL $656125,%ecx > MOVD %ecx,%mm2; MOVL $1,%eax; MOVD %eax,%mm1 > > CLC;CMC; CLD > > LEA Zahl,%edi; MOVD %edi,%mm0 > > MOV $2047,%edx; MOVL $1000000000,%ebx > InitLoop: > SBB %eax,%eax; DIV %ebx; STOSL; LOOP InitLoop; JMP DezStore > > # HAUPTSCHLEIFE > DivLoop: > LODSL; DIVL %ebx > unShortened: > STOSL; LOOP DivLoop > DezStore: > PUSHL %edx > MOVD %mm2,%ecx; TESTL %ecx,%ecx; JE endCalc > > MOVD %mm0,%esi; MOVL %esi,%edi > > LODSL; SUBL %edx,%edx; DIVL %ebx > > TESTL %eax,%eax > JNE unShortened; PSUBD %mm1,%mm2; LOOP DivLoop; JMP DezStore > endCalc: > MOVL %esp, DezZeiger; MOVD %mm3,%esp > POPL %ebx > "); > for(;DezZeiger != Zahl+702271;++DezZeiger)printf("%09u ",*DezZeiger); > > printf("\n"); > } For a number containing n bits, your base conversion code above will have bit complexity (and hence speed) O(n^2). Divide-and-conquer methods for base conversion, using fast multiplication/division of large numbers, are asymptotically faster than that. Specifically, if M(n) is the time needed to multiply a pair of n-bit numbers, then the complexity of base conversion is also just O(M(n)). of Mathematica; in version 5 I think you would get a timing under 30 seconds. To see more specifically how the divide-and-conquer works, you can do a crude implementation in Mathematica as below (you could also do a more refined one at the expense of a bit more coding). I should mention that I have not fully tested it for correctness but it seems to work as it ought. digits[n_,base_] /; base>n := {n} digits[n_,base_] := With[{halfsize=Ceiling[Log[N[base],n]/2]}, Join[PadRight[digits[#[[2]],base],halfsize],digits[#[[1]],base]]& [ Internal`QuotientMod[n,base^halfsize]] ] The runs below will give an indication of the asymptotic behavior. In[73]:= Timing[dd1 = digits[2^209960-1,10^9];] Out[73]= {0.61 Second, Null} In[74]:= Timing[dd2 = digits[2^2099601-1,10^9];] Out[74]= {7.34 Second, Null} In[75]:= Timing[dd3 = digits[2^20996011-1,10^9];] Out[75]= {103.69 Second, Null} The build in code is faster though not tremendously so: In[80]:= Timing[ee1 = Reverse[IntegerDigits[2^209960-1,10^9]];] Out[80]= {0.04 Second, Null} In[81]:= Timing[ee2 = Reverse[IntegerDigits[2^2099601-1,10^9]];] Out[81]= {1.6 Second, Null} In[82]:= Timing[ee3 = Reverse[IntegerDigits[2^20996011-1,10^9]];] Out[82]= {41.33 Second, Null} Note that digits is indeed correct at least for the inputs used in the tests above. In[83]:= {dd1,dd2,dd3} === {ee1,ee2,ee3} Out[83]= True Daniel Lichtblau Wolfram Research
- References:
- 2^20991011-1
- From: Friedrich Laher <mathefritz@schmieder-laher.de>
- 2^20991011-1