Re: FilledPlot with Implicit Functions?
- To: mathgroup at smc.vnet.net
- Subject: [mg45802] Re: FilledPlot with Implicit Functions?
- From: bobhanlon at aol.com (Bob Hanlon)
- Date: Mon, 26 Jan 2004 01:53:08 -0500 (EST)
- References: <buvvup$jaq$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Needs["Graphics`"];
InequalityPlot[1<x^2+y^2<2,
{x,-3,3},{y,-3,3},
Fills->{SkyBlueDeep}];
DisplayTogether[
FilledPlot[
{Sqrt[2-x^2],-Sqrt[2-x^2]},
{x,-Sqrt[2],Sqrt[2]},
Fills->SkyBlueDeep],
FilledPlot[
{Sqrt[1-x^2],-Sqrt[1-x^2]},
{x,-1,1}, Fills->White],
AspectRatio->1];
FilledPlot[{Sqrt[2-x^2],-Sqrt[2-x^2],
Sqrt[1-x^2]*UnitStep[1-Abs[x]],
-Sqrt[1-x^2]*UnitStep[1-Abs[x]]},
{x,-Sqrt[2],Sqrt[2]}, AspectRatio->1,
Fills->{White,SkyBlueDeep, SkyBlueDeep,White},
PlotRange->All];
Show[Graphics[{
SkyBlueDeep,Disk[{0, 0}, Sqrt[2]],
White,Disk[{0, 0}, 1],
Black, Circle[{0, 0}, Sqrt[2]],
Circle[{0, 0}, 1]}],
AspectRatio->1,
Axes->True, AxesFront->True];
Bob Hanlon
In article <buvvup$jaq$1 at smc.vnet.net>, "e.t." <e-t at gmx.li> wrote:
<< how can fill the range between the to circles? FilledPlot will not work
with implicit functions.
thx,
Oliver
Needs["Graphics`ImplicitPlot`"];
f1 := x^2 + y^2 == 2;
f2 := x^2 + y^2 == 1;
ImplicitPlot[{f1, f2}, {x, -3, 3},
AxesLabel -> {"x", "y"},
PlotStyle -> {{}, Dashing[{0.02}]}];