Re: FilledPlot with Implicit Functions?

• To: mathgroup at smc.vnet.net
• Subject: [mg45802] Re: FilledPlot with Implicit Functions?
• From: bobhanlon at aol.com (Bob Hanlon)
• Date: Mon, 26 Jan 2004 01:53:08 -0500 (EST)
• References: <buvvup\$jaq\$1@smc.vnet.net>
• Sender: owner-wri-mathgroup at wolfram.com

```Needs["Graphics`"];

InequalityPlot[1<x^2+y^2<2,
{x,-3,3},{y,-3,3},
Fills->{SkyBlueDeep}];

DisplayTogether[
FilledPlot[
{Sqrt[2-x^2],-Sqrt[2-x^2]},
{x,-Sqrt[2],Sqrt[2]},
Fills->SkyBlueDeep],
FilledPlot[
{Sqrt[1-x^2],-Sqrt[1-x^2]},
{x,-1,1}, Fills->White],
AspectRatio->1];

FilledPlot[{Sqrt[2-x^2],-Sqrt[2-x^2],
Sqrt[1-x^2]*UnitStep[1-Abs[x]],
-Sqrt[1-x^2]*UnitStep[1-Abs[x]]},
{x,-Sqrt[2],Sqrt[2]}, AspectRatio->1,
Fills->{White,SkyBlueDeep, SkyBlueDeep,White},
PlotRange->All];

Show[Graphics[{
SkyBlueDeep,Disk[{0, 0}, Sqrt[2]],
White,Disk[{0, 0}, 1],
Black, Circle[{0, 0}, Sqrt[2]],
Circle[{0, 0}, 1]}],
AspectRatio->1,
Axes->True, AxesFront->True];

Bob Hanlon

In article <buvvup\$jaq\$1 at smc.vnet.net>, "e.t." <e-t at gmx.li> wrote:

<< how can fill the range between the to circles? FilledPlot will not work
with implicit functions.
thx,
Oliver

Needs["Graphics`ImplicitPlot`"];
f1 := x^2 + y^2 == 2;
f2 := x^2 + y^2 == 1;
ImplicitPlot[{f1, f2}, {x, -3, 3},
AxesLabel -> {"x", "y"},
PlotStyle -> {{}, Dashing[{0.02}]}];

```

• Prev by Date: Re: [Outer [Times, , ] ] Question
• Next by Date: Re: [Outer [Times, , ] ] Question
• Previous by thread: RE: FilledPlot with Implicit Functions?
• Next by thread: Re: FilledPlot with Implicit Functions?