Re: FilledPlot with Implicit Functions?
- To: mathgroup at smc.vnet.net
- Subject: [mg45802] Re: FilledPlot with Implicit Functions?
- From: bobhanlon at aol.com (Bob Hanlon)
- Date: Mon, 26 Jan 2004 01:53:08 -0500 (EST)
- References: <buvvup$jaq$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Needs["Graphics`"]; InequalityPlot[1<x^2+y^2<2, {x,-3,3},{y,-3,3}, Fills->{SkyBlueDeep}]; DisplayTogether[ FilledPlot[ {Sqrt[2-x^2],-Sqrt[2-x^2]}, {x,-Sqrt[2],Sqrt[2]}, Fills->SkyBlueDeep], FilledPlot[ {Sqrt[1-x^2],-Sqrt[1-x^2]}, {x,-1,1}, Fills->White], AspectRatio->1]; FilledPlot[{Sqrt[2-x^2],-Sqrt[2-x^2], Sqrt[1-x^2]*UnitStep[1-Abs[x]], -Sqrt[1-x^2]*UnitStep[1-Abs[x]]}, {x,-Sqrt[2],Sqrt[2]}, AspectRatio->1, Fills->{White,SkyBlueDeep, SkyBlueDeep,White}, PlotRange->All]; Show[Graphics[{ SkyBlueDeep,Disk[{0, 0}, Sqrt[2]], White,Disk[{0, 0}, 1], Black, Circle[{0, 0}, Sqrt[2]], Circle[{0, 0}, 1]}], AspectRatio->1, Axes->True, AxesFront->True]; Bob Hanlon In article <buvvup$jaq$1 at smc.vnet.net>, "e.t." <e-t at gmx.li> wrote: << how can fill the range between the to circles? FilledPlot will not work with implicit functions. thx, Oliver Needs["Graphics`ImplicitPlot`"]; f1 := x^2 + y^2 == 2; f2 := x^2 + y^2 == 1; ImplicitPlot[{f1, f2}, {x, -3, 3}, AxesLabel -> {"x", "y"}, PlotStyle -> {{}, Dashing[{0.02}]}];