Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2004
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

Mathematica notebook for calculating a Bryant cousin minimal surface

  • To: mathgroup at smc.vnet.net
  • Subject: [mg49284] Mathematica notebook for calculating a Bryant cousin minimal surface
  • From: "Roger L. Bagula" <rlbtftn at netscape.net>
  • Date: Sun, 11 Jul 2004 02:16:17 -0400 (EDT)
  • Sender: owner-wri-mathgroup at wolfram.com

Based on Pascal Collin's paper:
"The Geometry of Finite Topology Bryant Surfaces"
L^4 group geometery and U(1)*SU(2) and the quaternion
are entires isomorphous in group terms ( that is the elemets of each can 
be transformed by simple comformal transformations to the other.
I'm not really satisfied with this method.



(***********************************************************************

                     Mathematica-Compatible Notebook

This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the notebook
starts with the line of stars above.

To get the notebook into a Mathematica-compatible application, do one of
the following:

* Save the data starting with the line of stars above into a file
   with a name ending in .nb, then open the file inside the application;

* Copy the data starting with the line of stars above to the
   clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the
word CacheID, otherwise Mathematica-compatible applications may try to
use invalid cache data.

For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
   web: http://www.wolfram.com
   email: info at wolfram.com
   phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from
Wolfram Research.
***********************************************************************)

(*CacheID: 232*)


(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[      7155,        351]*)
(*NotebookOutlinePosition[      8054,        380]*)
(*  CellTagsIndexPosition[      8010,        376]*)
(*WindowFrame->Normal*)



Notebook[{
Cell[BoxData[
     \(Clear[f, g, C0, A0, D0, B0, dF, F, W, M, t]\)], "Input"],

Cell[BoxData[
     \( (*\ a\ possible\ \ solution\ to\ the\ Bryant\ cousin\ 
equations*) \)],
   "Input"],

Cell[CellGroupData[{

Cell[BoxData[
     \(A0[z] = 1/z\)], "Input"],

Cell[BoxData[
     \(1\/z\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(B0[z] = 0\)], "Input"],

Cell[BoxData[
     \(0\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(C0[z] = z^2\)], "Input"],

Cell[BoxData[
     \(z\^2\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(D0[z] = z\)], "Input"],

Cell[BoxData[
     \(z\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(F = {{A0[z], B0[z]}, {C0[z], D0[z]}}\)], "Input"],

Cell[BoxData[
     \({{1\/z, 0}, {z\^2, z}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(Det[F]\)], "Input"],

Cell[BoxData[
     \(1\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(dF = D[F, z]\)], "Input"],

Cell[BoxData[
     \({{\(-\(1\/z\^2\)\), 0}, {2\ z, 1}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(Det[dF]\)], "Input"],

Cell[BoxData[
     \(\(-\(1\/z\^2\)\)\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(F1 = MatrixPower[F, \(-1\)]\)], "Input"],

Cell[BoxData[
     \({{z, 0}, {\(-z\^2\), 1\/z}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(Det[F1]\)], "Input"],

Cell[BoxData[
     \(1\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(M = F1 . dF\)], "Input"],

Cell[BoxData[
     \({{\(-\(1\/z\)\), 0}, {3, 1\/z}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(W = {{g*f, \(-f\)*g^2}, {f, \(-f\)*g}}\)], "Input"],

Cell[BoxData[
     \({{f\ g, \(-f\)\ g\^2}, {f, \(-f\)\ g}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(f = Simplify[M[\([2, 1]\)]]\)], "Input"],

Cell[BoxData[
     \(3\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(a = M[\([1, 1]\)] - f*g\)], "Input"],

Cell[BoxData[
     \(\(-3\)\ g - 1\/z\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(Solve[a == 0, g]\)], "Input"],

Cell[BoxData[
     \({{g \[Rule] \(-\(1\/\(3\ z\)\)\)}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(g = Simplify[M[\([1, 1]\)]/f]\)], "Input"],

Cell[BoxData[
     \(\(-\(1\/\(3\ z\)\)\)\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(dF\)], "Input"],

Cell[BoxData[
     \({{\(-\(1\/z\^2\)\), 0}, {2\ z, 1}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(Solve[Det[dF] == 0, z]\)], "Input"],

Cell[BoxData[
     \({}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(f\)], "Input"],

Cell[BoxData[
     \(3\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(g\)], "Input"],

Cell[BoxData[
     \(\(-\(1\/\(3\ z\)\)\)\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(x1 = Expand[f*\((1 - g^2)\)/2]\)], "Input"],

Cell[BoxData[
     \(3\/2 - 1\/\(6\ z\^2\)\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(y1 = Expand[I*\((1 + g^2)\)/2]\)], "Input"],

Cell[BoxData[
     \(I\/2 + I\/\(18\ z\^2\)\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(z1 = Expand[f*g]\)], "Input"],

Cell[BoxData[
     \(\(-\(1\/z\)\)\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(xa = Integrate[x1, {z, 0.1, t}]\)], "Input"],

Cell[BoxData[
     \(\(-1.8166666666666666`\) +
       \(\(1.`\[InvisibleSpace]\) + 0.`\ t + 9\ t\^2\)\/\(6\
           \((\(0.`\[InvisibleSpace]\) + t)\)\)\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(ya = Integrate[y1, {z, 0.1, t}]\)], "Input"],

Cell[BoxData[
     \(0.505555555555555535`\ I +
       \(\(-1.`\)\ I + 0.`\ I\ t + 9\ I\ t\^2\)\/\(18\
           \((\(0.`\[InvisibleSpace]\) + t)\)\)\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(za = Integrate[z1, {z, 0.1, t}]\)], "Input"],

Cell[BoxData[
     \(\(-2.30258509299404545`\) - Log[\(0.`\[InvisibleSpace]\) + t]\)],
   "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(t = Exp[r]*\((Cos[t0] + I*Sin[t0])\)\)], "Input"],

Cell[BoxData[
     \(E\^r\ \((Cos[t0] + I\ Sin[t0])\)\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(ga =
       ParametricPlot3D[{Re[xa], Re[ya], Re[za]}, {r, \(-1\), 1}, {t0,
           \(-Pi\), Pi}, \ PlotPoints -> {30, 30}, \ Axes -> False,
         Boxed -> False]\)], "Input"],

Cell[BoxData[
     TagBox[\(\[SkeletonIndicator]  Graphics3D  \[SkeletonIndicator]\),
       False,
       Editable->False]], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(Show[ga, ViewPoint -> {0.196, \ 3.336, \ 0.531}]\)], "Input"],

Cell[BoxData[
     TagBox[\(\[SkeletonIndicator]  Graphics3D  \[SkeletonIndicator]\),
       False,
       Editable->False]], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(Show[ga, ViewPoint -> {3.322, \ \(-0.360\), \ 0.531}]\)], "Input"],

Cell[BoxData[
     TagBox[\(\[SkeletonIndicator]  Graphics3D  \[SkeletonIndicator]\),
       False,
       Editable->False]], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
     \(Show[ga, ViewPoint -> {0.045, \ 0.001, \ 3.383}]\)], "Input"],

Cell[BoxData[
     TagBox[\(\[SkeletonIndicator]  Graphics3D  \[SkeletonIndicator]\),
       False,
       Editable->False]], "Output"]
}, Open  ]]
},
FrontEndVersion->"Macintosh 3.0",
ScreenRectangle->{{0, 1920}, {0, 1060}},
WindowSize->{1610, 630},
WindowMargins->{{142, Automatic}, {Automatic, 123}},
PrintingCopies->1,
PrintingPageRange->{1, Automatic},
MacintoshSystemPageSetup->"\<\
00/0004/0B`000003509H?ocokD<f@V[7b<5:@?l0040004/0B`000003509H04/
02d5X5k/02H20@4101P00BL?00400ATLNm000000000000010000000000000000
0000000000000002000000@210D00000\>"
]


(***********************************************************************
Cached data follows.  If you edit this Notebook file directly, not using
Mathematica, you must remove the line containing CacheID at the top of
the file.  The cache data will then be recreated when you save this file
from within Mathematica.
***********************************************************************)

(*CellTagsOutline
CellTagsIndex->{}
*)

(*CellTagsIndex
CellTagsIndex->{}
*)

(*NotebookFileOutline
Notebook[{
Cell[1709, 49, 76, 1, 27, "Input"],
Cell[1788, 52, 103, 2, 27, "Input"],

Cell[CellGroupData[{
Cell[1916, 58, 44, 1, 27, "Input"],
Cell[1963, 61, 38, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2038, 67, 42, 1, 27, "Input"],
Cell[2083, 70, 35, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2155, 76, 44, 1, 27, "Input"],
Cell[2202, 79, 38, 1, 28, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2277, 85, 42, 1, 27, "Input"],
Cell[2322, 88, 35, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2394, 94, 69, 1, 27, "Input"],
Cell[2466, 97, 56, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2559, 103, 39, 1, 27, "Input"],
Cell[2601, 106, 35, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2673, 112, 45, 1, 27, "Input"],
Cell[2721, 115, 68, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2826, 121, 40, 1, 27, "Input"],
Cell[2869, 124, 50, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2956, 130, 60, 1, 27, "Input"],
Cell[3019, 133, 61, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3117, 139, 40, 1, 27, "Input"],
Cell[3160, 142, 35, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3232, 148, 44, 1, 27, "Input"],
Cell[3279, 151, 65, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3381, 157, 71, 1, 27, "Input"],
Cell[3455, 160, 72, 1, 28, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3564, 166, 60, 1, 27, "Input"],
Cell[3627, 169, 35, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3699, 175, 56, 1, 27, "Input"],
Cell[3758, 178, 50, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3845, 184, 49, 1, 27, "Input"],
Cell[3897, 187, 68, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4002, 193, 62, 1, 27, "Input"],
Cell[4067, 196, 54, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4158, 202, 35, 1, 27, "Input"],
Cell[4196, 205, 68, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4301, 211, 55, 1, 27, "Input"],
Cell[4359, 214, 36, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4432, 220, 34, 1, 27, "Input"],
Cell[4469, 223, 35, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4541, 229, 34, 1, 27, "Input"],
Cell[4578, 232, 54, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4669, 238, 63, 1, 27, "Input"],
Cell[4735, 241, 55, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4827, 247, 63, 1, 27, "Input"],
Cell[4893, 250, 56, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4986, 256, 49, 1, 27, "Input"],
Cell[5038, 259, 47, 1, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[5122, 265, 64, 1, 27, "Input"],
Cell[5189, 268, 169, 3, 45, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[5395, 276, 64, 1, 27, "Input"],
Cell[5462, 279, 163, 3, 45, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[5662, 287, 64, 1, 27, "Input"],
Cell[5729, 290, 98, 2, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[5864, 297, 69, 1, 27, "Input"],
Cell[5936, 300, 66, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6039, 306, 201, 4, 27, "Input"],
Cell[6243, 312, 132, 3, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6412, 320, 81, 1, 27, "Input"],
Cell[6496, 323, 132, 3, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6665, 331, 86, 1, 27, "Input"],
Cell[6754, 334, 132, 3, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6923, 342, 81, 1, 27, "Input"],
Cell[7007, 345, 132, 3, 26, "Output"]
}, Open  ]]
}
]
*)




(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)


  • Prev by Date: Re: Normal distribtion
  • Next by Date: Matrix Manipulation: deletion of rows and columns
  • Previous by thread: RE: Test for pure real complex quotient
  • Next by thread: Matrix Manipulation: deletion of rows and columns