Use of a rational tiling group in sl(2,R) to get a 3d surface
- To: mathgroup at smc.vnet.net
- Subject: [mg49296] Use of a rational tiling group in sl(2,R) to get a 3d surface
- From: Roger Bagula <tftn at earthlink.net>
- Date: Mon, 12 Jul 2004 02:11:37 -0400 (EDT)
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
This method was suggested by the Bryant cousin surface. It gives an hyperboloid of one sheet that is very like a catenoid in shape. A determinant one group is assumed through out. This result is very different that the intent of Lagarias in terms of a upper half plane rational tiling. Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : URL : http://home.earthlink.net/~tftn URL : http://victorian.fortunecity.com/carmelita/435/ (*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 3.0, MathReader 3.0, or any compatible application. The data for the notebook starts with the line of stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info at wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 8382, 263]*) (*NotebookOutlinePosition[ 9317, 293]*) (* CellTagsIndexPosition[ 9273, 289]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[ \( (*\ marked\ tiles\ sl \((2, r)\)\ rational\ \(group : \ \(page291 : \ A\ walk\ along\ the\ branches\ of\ the\ extended\ Farey\ Tree\ by \ Lagarias\ and\ Tresser\)\)*) \)], "Input"], Cell[BoxData[ \( (*\ By\ Roger\ L . \ Bagula\ 11\ July\ 2004 \[Copyright]*) \)], "Input"], Cell[BoxData[ \( (*\ defined\ as\ Det[a] = \(Det[b] = \(Det[c] = 1\)\)*) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(a = {{p1, p0}, {q1, q0}}\)], "Input"], Cell[BoxData[ \({{p1, p0}, {q1, q0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(b = {{\(-p0\), p0 + p1}, {\(-q0\), q0 + q1}}\)], "Input"], Cell[BoxData[ \({{\(-p0\), p0 + p1}, {\(-q0\), q0 + q1}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(c = {{p0 + p1, p1}, {q0 + q1, \(-q1\)}}\)], "Input"], Cell[BoxData[ \({{p0 + p1, p1}, {q0 + q1, \(-q1\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(a1 = MatrixPower[a, \(-1\)]\)], "Input"], Cell[BoxData[ \({{q0\/\(p1\ q0 - p0\ q1\), \(-\(p0\/\(p1\ q0 - p0\ q1\)\)\)}, { \(-\(q1\/\(p1\ q0 - p0\ q1\)\)\), p1\/\(p1\ q0 - p0\ q1\)}}\)], "Output"] }, Open ]], Cell[BoxData[ \( (*\ group\ definition\ in\ the\ variables {x, y, z}*) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(g = x*a + y*b + z*c\)], "Input"], Cell[BoxData[ \({{p1\ x - p0\ y + \((p0 + p1)\)\ z, p0\ x + \((p0 + p1)\)\ y + p1\ z}, { q1\ x - q0\ y + \((q0 + q1)\)\ z, q0\ x + \((q0 + q1)\)\ y - q1\ z}} \)], "Output"] }, Open ]], Cell[BoxData[ \( (*\ Det[a] = 1\ solution\ for\ q1*) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[p1\ q0 - p0\ q1 == 1, q1]\)], "Input"], Cell[BoxData[ \({{q1 \[Rule] \(-\(\(1 - p1\ q0\)\/p0\)\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(m1 = Simplify[a1 . g] /. {p1\ q0 - p0\ q1 -> 1, \(-p1\)\ q0 + p0\ q1 -> \(-1\), q1 -> \(-\(\(1 - p1\ q0\)\/p0\)\)} \)], "Input"], Cell[BoxData[ \({{x + z, \(-\((1 - p1\ q0)\)\)\ \((\(-y\) + z)\) + p1\ q0\ \((y + z)\)}, { \(-y\) + z, \((1 - p1\ q0)\)\ \((x + y)\) + p1\ \((q0\ \((x + y)\) + \(2\ \((1 - p1\ q0)\)\ z\)\/p0)\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Simplify[Det[m1]]\)], "Input"], Cell[BoxData[ \(\(\(-2\)\ p1\ \((\(-1\) + p1\ q0)\)\ z\ \((x + z)\) + p0\ \((x\^2 + y\^2 - y\ z + 2\ p1\ q0\ y\ z + z\^2 - 2\ p1\ q0\ z\^2 + x\ \((y + z)\))\)\)\/p0\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[ \(1\/p0\) \((\(-2\)\ p1\ \((\(-1\) + p1\ q0)\)\ z\ \((x + z)\) + p0\ \((x\^2 + y\^2 - y\ z + 2\ p1\ q0\ y\ z + z\^2 - 2\ p1\ q0\ z\^2 + x\ \((y + z)\))\))\) - 1 == 0, p1] \)], "Input"], Cell[BoxData[ \({{p1 \[Rule] \(\(-z\)\ \((\(-2\)\ x - 2\ p0\ q0\ y - 2\ z + 2\ p0\ q0\ z)\) - \@\(z\^2\ \((\(-2\)\ x - 2\ p0\ q0\ y - 2\ z + 2\ p0\ q0\ z)\)\^2 - 4\ p0\ q0\ z\ \((2\ x + 2\ z)\)\ \((1 - x\^2 - x\ y - y\^2 - x\ z + y\ z - z\^2)\)\)\)\/\(2 \ q0\ z\ \((2\ x + 2\ z)\)\)}, { p1 \[Rule] \(\(-z\)\ \((\(-2\)\ x - 2\ p0\ q0\ y - 2\ z + 2\ p0\ q0\ z)\) + \@\(z\^2\ \((\(-2\)\ x - 2\ p0\ q0\ y - 2\ z + 2\ p0\ q0\ z)\)\^2 - 4\ p0\ q0\ z\ \((2\ x + 2\ z)\)\ \((1 - x\^2 - x\ y - y\^2 - x\ z + y\ z - z\^2)\)\)\)\/\(2 \ q0\ z\ \((2\ x + 2\ z)\)\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(m2 = Simplify[g . a1] /. {p1\ q0 - p0\ q1 -> 1, \(-p1\)\ q0 + p0\ q1 -> \(-1\), q1 -> \(-\(\(1 - p1\ q0\)\/p0\)\)} \)], "Input"], Cell[BoxData[ \({{\(-p0\)\ \((\(-\(\(\((1 - p1\ q0)\)\ \((x + y)\)\)\/p0\)\) + q0\ \((y - z)\))\) - p1\ \((\(-q0\)\ \((x + z)\) - \(\((1 - p1\ q0)\)\ \((y + z)\)\)\/p0) \), p0\^2\ \((y - z)\) + p0\ p1\ \((y - z)\) + p1\^2\ \((y + z)\)}, { \(-\((q0\^2 - \(q0\ \((1 - p1\ q0)\)\)\/p0 + \((1 - p1\ q0)\)\^2\/p0\^2)\)\)\ \((y - z)\), p1\ \((q0\ \((x + y)\) - \(\((1 - p1\ q0)\)\ \((y - z)\)\)\/p0)\) - p0\ \((\(-\(\(\((1 - p1\ q0)\)\ \((x + z)\)\)\/p0\)\) + q0\ \((\(-y\) + z)\))\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Simplify[Det[m2]]\)], "Input"], Cell[BoxData[ \(\(\(-2\)\ p1\ \((\(-1\) + p1\ q0)\)\ z\ \((x + z)\) + p0\ \((x\^2 + y\^2 - y\ z + 2\ p1\ q0\ y\ z + z\^2 - 2\ p1\ q0\ z\^2 + x\ \((y + z)\))\)\)\/p0\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[ \(1\/p0\) \((\(-2\)\ p1\ \((\(-1\) + p1\ q0)\)\ z\ \((x + z)\) + p0\ \((x\^2 + y\^2 - y\ z + 2\ p1\ q0\ y\ z + z\^2 - 2\ p1\ q0\ z\^2 + x\ \((y + z)\))\))\) - 1 == 0, p1] \)], "Input"], Cell[BoxData[ \({{p1 \[Rule] \(\(-z\)\ \((\(-2\)\ x - 2\ p0\ q0\ y - 2\ z + 2\ p0\ q0\ z)\) - \@\(z\^2\ \((\(-2\)\ x - 2\ p0\ q0\ y - 2\ z + 2\ p0\ q0\ z)\)\^2 - 4\ p0\ q0\ z\ \((2\ x + 2\ z)\)\ \((1 - x\^2 - x\ y - y\^2 - x\ z + y\ z - z\^2)\)\)\)\/\(2 \ q0\ z\ \((2\ x + 2\ z)\)\)}, { p1 \[Rule] \(\(-z\)\ \((\(-2\)\ x - 2\ p0\ q0\ y - 2\ z + 2\ p0\ q0\ z)\) + \@\(z\^2\ \((\(-2\)\ x - 2\ p0\ q0\ y - 2\ z + 2\ p0\ q0\ z)\)\^2 - 4\ p0\ q0\ z\ \((2\ x + 2\ z)\)\ \((1 - x\^2 - x\ y - y\^2 - x\ z + y\ z - z\^2)\)\)\)\/\(2 \ q0\ z\ \((2\ x + 2\ z)\)\)}}\)], "Output"] }, Open ]], Cell[BoxData[ \(\( (*\ p1\ solutions\ show\ the\ group\ behaves\ as\ Abelian\ \((a^\(-1\))\) . g - g . \((a^\(-1\))\) == 0*) \ \)\)], "Input"], Cell[BoxData[ \( (*\ RATIONAL_Implicit = \(1\/p0\) \((\(-2\)\ p1\ \((\(-1\) + p1\ q0)\)\ z\ \((x + z)\) + p0\ \((x\^2 + y\^2 - y\ z + 2\ p1\ q0\ y\ z + z\^2 - 2\ p1\ q0\ z\^2 + x\ \((y + z)\))\))\) - 1 == 0\ *) \)], "Input"], Cell[BoxData[ \(\( (*\ for\ p0 = 1, p1 = 2, q0 = 3\ this\ results\ in\ a\ Catenoid\ like\ 3 d\ surface*) \n (*\ such\ a\ surface\ as\ seen\ in\ a\ Bryant\ cousin\ Minimal\ surface*) \ \)\)], "Input"] }, FrontEndVersion->"Macintosh 3.0", ScreenRectangle->{{0, 1920}, {0, 1060}}, ScreenStyleEnvironment->"Condensed", WindowSize->{1196, 921}, WindowMargins->{{172, Automatic}, {Automatic, 14}}, PrintingCopies->1, PrintingPageRange->{1, Automatic}, MacintoshSystemPageSetup->"\<\ 00/0004/0B`000003509H?ocokD" ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1709, 49, 255, 6, 18, "Input"], Cell[1967, 57, 97, 2, 18, "Input"], Cell[2067, 61, 90, 1, 18, "Input"], Cell[CellGroupData[{ Cell[2182, 66, 57, 1, 18, "Input"], Cell[2242, 69, 54, 1, 18, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2333, 75, 77, 1, 18, "Input"], Cell[2413, 78, 74, 1, 18, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2524, 84, 72, 1, 18, "Input"], Cell[2599, 87, 69, 1, 18, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2705, 93, 60, 1, 18, "Input"], Cell[2768, 96, 168, 3, 34, "Output"] }, Open ]], Cell[2951, 102, 88, 1, 18, "Input"], Cell[CellGroupData[{ Cell[3064, 107, 52, 1, 18, "Input"], Cell[3119, 110, 190, 3, 18, "Output"] }, Open ]], Cell[3324, 116, 70, 1, 18, "Input"], Cell[CellGroupData[{ Cell[3419, 121, 64, 1, 18, "Input"], Cell[3486, 124, 76, 1, 34, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3599, 130, 176, 4, 34, "Input"], Cell[3778, 136, 253, 6, 34, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4068, 147, 50, 1, 18, "Input"], Cell[4121, 150, 206, 3, 36, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4364, 158, 276, 6, 34, "Input"], Cell[4643, 166, 781, 14, 67, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5461, 185, 176, 4, 34, "Input"], Cell[5640, 191, 625, 11, 69, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6302, 207, 50, 1, 18, "Input"], Cell[6355, 210, 206, 3, 36, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6598, 218, 276, 6, 34, "Input"], Cell[6877, 226, 781, 14, 67, "Output"] }, Open ]], Cell[7673, 243, 166, 3, 18, "Input"], Cell[7842, 248, 310, 7, 26, "Input"], Cell[8155, 257, 223, 4, 32, "Input"] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************) -- Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : URL : http://home.earthlink.net/~tftn URL : http://victorian.fortunecity.com/carmelita/435/