Re: KS Analysis In Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg49309] Re: KS Analysis In Mathematica
- From: "Doug" <umdougmm at hotmail.com>
- Date: Tue, 13 Jul 2004 04:32:42 -0400 (EDT)
- Organization: The University of Manitoba
- References: <cctadj$c0u$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
The links to the stats packages don't work....and neither does the contact info to these people ??? Doug "Christos Argyropoulos MD" <chrisarg at medscape.com> wrote in message news:cctadj$c0u$1 at smc.vnet.net... > Hi, > Try the following url > http://www.verbeia.com/mathematica/mathecon/othercode.html > if you are after for a "Normality" test and other goodies. > Alternatively try the following Mathematica Code: > ------------------------------------------------------------- > Needs["Statistics`DescriptiveStatistics`"]; > Needs["Statistics`DataManipulation`"]; > Needs["Statistics`ContinuousDistributions`"]; > Needs["Statistics`DescriptiveStatistics`"]; > Needs["Statistics`ConfidenceIntervals`"]; > Needs["Statistics`MultiDescriptiveStatistics`"]; > Q[s_] := Module[{r}, Sum[(r - s)^r*(x^r)/r!, {r, 0, Floor[s]}]] > F[s_, m_] := Normal[Series[Simplify[(Q[s]^2)/Q[2*s]], {x, 0, m}]] > Kolmogorov[d_, m_] := Min[N[Abs[Coefficient[F[m*d, m], x, m]*m!/ > (m^m)]], 1] > Lillefors[y_List] := Module[{stand, quant, > kolm}, stand = Standardize[y]; quant = Transpose[QuantileForm > [stand]]; > kolm = N[Max[Abs[quant[[1]] - > Map[CDF[NormalDistribution[0, 1], #] &, quant[[2]]]]]]] > ------------------------------------------------------------- > Kolmogorov[d,m] gives the Probability of the Kolmogorov Smirnov Test > when the test statistic value is d and the sample tested is of size m. > If you want to test whether a list of observations has come from a > Normal Distribution with unknow mean and variance, use the function > Lillefors[obs] which calculates the P-value based on the Lillefors > modification of the KS statistic. > Cheers > Christos Argyropoulos > > > > > Sent by Medscape Mail: Free Portable E-mail for Professionals on the Move > http://www.medscape.com >
- Follow-Ups:
- Re: Re: KS Analysis In Mathematica
- From: Mark Coleman <mark@markscoleman.com>
- Re: Re: KS Analysis In Mathematica