MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

AW: 3D graphs with constraints


Hello Mario,

try this example please:

a = 3
b = 5
v = 7
llimit = v/(Pi*b^2)
Plot3D[Sin[l*r], {r, a, b}, 
  {l, 0, llimit}]

As r cannot exceed b you can replace r^2 by b^2 in llimit.

Adjust the a, b, v to achieve the degrees of difference (<,>) you want. 

Best regards,
Matthias Bode
Sal. Oppenheim jr. & Cie. KGaA
Untermainanlage 1
D-60329 Frankfurt am Main
GERMANY
Tel.: +49(0)69 71 34 53 80
Mobile: +49(0)172 6 74 95 77
Fax: +49(0)69 71 34 95 380
E-mail: matthias.bode at oppenheim.de
Internet: http://www.oppenheim.de



-----Ursprüngliche Nachricht-----
Von: Mario Biondini [mailto:Mario.Biondini at ndsu.nodak.edu] 
Gesendet: Dienstag, 20. Juli 2004 13:54
An: mathgroup at smc.vnet.net
Betreff: [mg49441] 3D graphs with constraints



In need to plot a function f[r,l] but only within the following domain 
for r, and l: a<r<b and l < v/(pi*r^2) where a, b, and v are constants. 
Any idea of how to do that.

Mario Biondini, Ph.D.
Department of Animal and Range Sciences
North Dakota State University
Fargo, ND 58105
Phone: (701) 231-8208
Fax: (701) 231-7590
e-mail: Mario.Biondini at ndsu.nodak.edu
http://www.ndsu.nodak.edu/instruct/biondini/vita/mebvita.htm


  • Prev by Date: Re: Diophantic Equations with Constraints
  • Next by Date: AW: Assigning names to columns of a matrix
  • Previous by thread: AW: Diophantic Equations with Constraints
  • Next by thread: AW: Assigning names to columns of a matrix