Re: AW: Fundamental theorem problem
- To: mathgroup at smc.vnet.net
- Subject: [mg49636] Re: [mg49581] AW: [mg49573] Fundamental theorem problem
- From: DrBob <drbob at bigfoot.com>
- Date: Sun, 25 Jul 2004 02:55:45 -0400 (EDT)
- References: <200407240747.DAA05761@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
FullSimplify has no success at my machine (version 5.0.1): FullSimplify[D[Integrate[ Sec[t], {t, 1, x^4}], x]] 4*x^3*If[(Re[x^4] < Pi || Im[x^4] != 0) && (Pi + x^4 == 0 || Im[x^4] != 0 || Pi + Re[x^4] > 0) && (Pi + 2*x^4 == 0 || Pi + 2*Re[x^4] > 0 || Im[x^4] != 0) && (2*x^4 == Pi || 2*Re[x^4] < Pi || Im[x^4] != 0), -((1/(-1 + x^4))* (2*(ArcTanh[Tan[1/2]] - ArcTanh[Tan[x^4/ 2]]))), Integrate[ Sec[1 + t*(-1 + x^4)], {t, 0, 1}, Assumptions -> !((Re[x^4] < Pi || Im[x^4] != 0) && (2*x^4 == Pi || 2*Re[x^4] < Pi || Im[x^4] != 0) && (Pi + x^4 == 0 || Im[x^4] != 0 || Pi + Re[x^4] > 0) && (Pi + 2*x^4 == 0 || Pi + 2*Re[x^4] > 0 || Im[x^4] != 0))]] + (-1 + x^4)* If[(Re[x^4] < Pi || Im[x^4] != 0) && (Pi + x^4 == 0 || Im[x^4] != 0 || Pi + Re[x^4] > 0) && (Pi + 2*x^4 == 0 || Pi + 2*Re[x^4] > 0 || Im[x^4] != 0) && (2*x^4 == Pi || 2*Re[x^4] < Pi || Im[x^4] != 0), (8*x^3*(ArcTanh[ Tan[1/2]] - ArcTanh[ Tan[x^4/2]]))/ (-1 + x^4)^2 + (4*x^3*Sec[x^4/2]^2)/ ((-1 + x^4)*(1 - Tan[x^4/2]^2)), Integrate[(4*t*x^3)* Sec[1 + t*(-1 + x^4)]* Tan[1 + t*(-1 + x^4)], {t, 0, 1}, Assumptions -> !((Re[x^4] < Pi || Im[x^4] != 0) && (2*x^4 == Pi || 2*Re[x^4] < Pi || Im[x^4] != 0) && (Pi + x^4 == 0 || Im[x^4] != 0 || Pi + Re[x^4] > 0) && (Pi + 2*x^4 == 0 || Pi + 2*Re[x^4] > 0 || Im[x^4] != 0))]] Bobby On Sat, 24 Jul 2004 03:47:11 -0400 (EDT), <Matthias.Bode at oppenheim.de> wrote: > Hello Steven, > > FullSimplify[D[Integrate[Sec[t], > {t, 1, x^4}], x]] > > yields: > > 4*x^3*Sec[x^4] > > Satisfied? > > Best regards, > Matthias Bode > Sal. Oppenheim jr. & Cie. KGaA > Untermainanlage 1 > D-60329 Frankfurt am Main > GERMANY > Tel.: +49(0)69 71 34 53 80 > Mobile: +49(0)172 6 74 95 77 > Fax: +49(0)69 71 34 95 380 > E-mail: matthias.bode at oppenheim.de > Internet: http://www.oppenheim.de > > > > -----Ursprüngliche Nachricht----- > Von: Steven Jonak [mailto:jonakst at gw.kirkwood.k12.mo.us] > Gesendet: Freitag, 23. Juli 2004 12:02 > An: mathgroup at smc.vnet.net > Betreff: [mg49573] Fundamental theorem problem > > > I input the command: D[Integrate[Sec[t],{t,1,x^4}],x] expecting to get > 4x^3 Sec[x^4] but instead got a fairly complicated result that doesn't > resemble what one would expect from the Fundamental Theorem of Calculus. > What am I doing wrong? Help! > > S Jonak > "Maintain an even strain." > > > -- DrBob at bigfoot.com www.eclecticdreams.net
- References:
- AW: Fundamental theorem problem
- From: Matthias.Bode@oppenheim.de
- AW: Fundamental theorem problem