Re: subtract a list of interpolating functions from another
- To: mathgroup at smc.vnet.net
- Subject: [mg48580] Re: subtract a list of interpolating functions from another
- From: sean_incali at yahoo.com (sean kim)
- Date: Sat, 5 Jun 2004 07:19:58 -0400 (EDT)
- References: <c9pfod$t27$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi Paul, Thanks for the reply. I can't seem to get your suggestion to work. It brings back lotta plotting error. so I looked at, Evaluate[(Subtract@@@stepde)/.ndsolstep] Evaluate[(Subtract@@@nostepdes)/.ndsol] first one brings back, {0.05 InterpolatingFunction[{{0.,400.}},<>][t] InterpolatingFunction[{{0.,400.}},<>][t]+ b'[t], 0.1 a0[t] InterpolatingFunction[{{0., 400.}}, <>][t] - 0.05\InterpolatingFunction[{{0., 400.}}, <>][t] InterpolatingFunction[{{0., 400.}}, <>][t] + x'[t], -0.1 a0[t] InterpolatingFunction[{{0., 400.}}, <>][t] + 0.05 \InterpolatingFunction[{{0., 400.}}, <>][t] InterpolatingFunction[{{0., 400.}}, <>][t] + y'[t]} It doesn't look like they are evaluated... same thing for What is Subtract@@@stepde supposed to do up there? thank you so much for any thoguhts. sean below is the code that was ran. k1 = 0.1; k2 = 0.05; a0[t_]:= 0.5/; t< 0 ; a0[t_]:= 0.5/;0 <= t<=20 ; a0[t_]:= 0.5/; 20<=t<= 60 ; a0[t_]:= 0.5/; 60<=t<= 400; a=0.5; stepde = {b'[t]== -k2 b[t] y[t], x'[t]== -k1 a0[t] x[t] + k2 b[t] y[t], y'[t]== k1 a0[t] x[t] - k2 b[t] y[t]}; nostepde = {b'[t]== -k2 b[t] y[t], x'[t]== -k1 a x[t] + k2 b[t] y[t], y'[t]== k1 a x[t] - k2 b[t] y[t]}; ndsolstep = NDSolve[ Join[stepde, { b[0] == 1, x[0] == 1, y[0] == 0}], {b[t], x[t], y[t]}, {t, 0,0,20, 60, 400,400}, Method->ExplicitRungeKutta][[1]] ; ndsol = NDSolve[Join[ nostepde, {b[0] == 1, x[0] == 1, y[0] == 0}], {b[t], x[t], y[t]}, {t, 0,400}][[1]] ; SetOptions[Plot,PlotRange -> All]; Evaluate[(Subtract@@@stepde)/.ndsolstep] Evaluate[(Subtract@@@nostepdes)/.ndsol] Plot[Evaluate[(Subtract@@@stepde)/.ndsolstep],{t,0,400}] Plot[Evaluate[(Subtract@@@nostepdes)/.ndsol],{t,0,400}] --- Paul Abbott <paul at physics.uwa.edu.au> wrote: > In article <c9pfod$t27$1 at smc.vnet.net>, > sean_incali at yahoo.com (sean kim) wrote: > > > still stepwise ode accuracy related question, > but... > > > > consider two lists of three interpolating > functions. > > > > like below. > > > > k1 = 1/10; k2 = 1/20; > > > > a0[t_] := 0.5 /; t < 0 ; > > a0[t_] := 0.5 /; 0 <= t <=20 ; > > a0[t_] := 0.5 /; 20 <= t <=60 ; > > a0[t_] := 0.5 /; 60 <= t <=400; > > > > a = 0.5; > > > > ndsolstep = NDSolve[{ b'[t] == -k2 b[t] y[t], > x'[t] == -k1 a0[t] x[t] > > + k2 b[t] y[t], y'[t] == k1 a0[t] x[t] - k2 b[t] > y[t], b[0] == 1, > > x[0] == 1, y[0] == 0}, {b, x, y}, {t, 0, 0, 20, > 60, 400, 400}, Method > > -> ExplicitRungeKutta][[1]] > > > > ndsol = NDSolve[{ b'[t] == -k2 b[t] y[t], x'[t] == > -k1 a x[t] + k2 > > b[t] y[t], y'[t] == k1 a x[t] - k2 b[t] y[t], > b[0] == 1, x[0] == 1, > > y[0] == 0}, {b, x, y}, {t, 0, 400}][[1]] > > > > > > will give two lists of > > > > {b -> InterpolatingFunction[{{0., 400.}}, <>], > > x -> InterpolatingFunction[{{0., 400.}}, <>], > > y -> InterpolatingFunction[{{0., 400.}}, <>]} > > > > one from normal system and another from stepwise > defined( which has > > Rob Knapp's fix in it) they should be same if not > very close. > > And they are. > > > I thought maybe I would take a value of > interpolating function at time > > poiints and subtract to see the differences. (to > check how close they > > are) > > Instead, why not just substitute the solutions back > into the > differential equations (Mathematica knows how to > compute derivatives of > InterpolatingFunctions) and see how well they are > satisfied: > > des = {b'[t] == -k2 b[t] y[t], x'[t] == -k1 a0[t] > x[t] + k2 b[t] y[t], > y'[t] == k1 a0[t] x[t] - k2 b[t] y[t]}; > > SetOptions[Plot, PlotRange -> All]; > > Plot[Evaluate[(Subtract @@@ des) /. ndsolstep], > {t, 0, 400}]; > > Plot[Evaluate[(Subtract @@@ des) /. ndsol], {t, 0, > 400}]; > > Cheers, > Paul > > -- > Paul Abbott Phone: > +61 8 9380 2734 > School of Physics, M013 Fax: > +61 8 9380 1014 > The University of Western Australia (CRICOS > Provider No 00126G) > 35 Stirling Highway > Crawley WA 6009 > mailto:paul at physics.uwa.edu.au > AUSTRALIA > http://physics.uwa.edu.au/~paul >