Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2004
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: subtract a list of interpolating functions from another

  • To: mathgroup at smc.vnet.net
  • Subject: [mg48580] Re: subtract a list of interpolating functions from another
  • From: sean_incali at yahoo.com (sean kim)
  • Date: Sat, 5 Jun 2004 07:19:58 -0400 (EDT)
  • References: <c9pfod$t27$1@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

Hi Paul, 

Thanks for the reply.

I can't seem to get your suggestion to work. It brings back lotta
plotting error. so I looked at,

Evaluate[(Subtract@@@stepde)/.ndsolstep]
Evaluate[(Subtract@@@nostepdes)/.ndsol]

first one brings back, 

{0.05 InterpolatingFunction[{{0.,400.}},<>][t]
InterpolatingFunction[{{0.,400.}},<>][t]+ b'[t],
0.1 a0[t] InterpolatingFunction[{{0., 400.}}, <>][t] -
0.05\InterpolatingFunction[{{0., 400.}}, <>][t]
InterpolatingFunction[{{0., 400.}}, <>][t] + x'[t],
-0.1 a0[t] InterpolatingFunction[{{0., 400.}}, <>][t] + 0.05
\InterpolatingFunction[{{0., 400.}}, <>][t]
InterpolatingFunction[{{0., 400.}}, <>][t] + y'[t]}

It doesn't look like they are evaluated... 

same thing for 

What is Subtract@@@stepde supposed to do up there? 


thank you so much for any thoguhts. 

sean 

below is the code that was ran. 


k1 = 0.1;
k2 = 0.05; 
a0[t_]:= 0.5/; t< 0 ;
a0[t_]:= 0.5/;0 <= t<=20 ;
a0[t_]:= 0.5/; 20<=t<= 60 ;
a0[t_]:= 0.5/; 60<=t<= 400;

a=0.5;

stepde = {b'[t]== -k2 b[t] y[t], x'[t]== -k1 a0[t] x[t] + k2 b[t]
y[t], y'[t]== k1 a0[t] x[t] - k2 b[t] y[t]};
nostepde = {b'[t]== -k2 b[t] y[t], x'[t]== -k1 a x[t] + k2 b[t] y[t],
y'[t]== k1 a  x[t] - k2 b[t] y[t]};

ndsolstep =  NDSolve[ Join[stepde, { b[0] == 1, x[0] == 1, y[0] ==
0}], {b[t], x[t], y[t]}, {t, 0,0,20, 60, 400,400},
Method->ExplicitRungeKutta][[1]] ;
ndsol = NDSolve[Join[ nostepde,  {b[0] == 1, x[0] == 1, y[0] == 0}],
{b[t], x[t], y[t]}, {t, 0,400}][[1]] ;

SetOptions[Plot,PlotRange -> All];

Evaluate[(Subtract@@@stepde)/.ndsolstep]
Evaluate[(Subtract@@@nostepdes)/.ndsol]

Plot[Evaluate[(Subtract@@@stepde)/.ndsolstep],{t,0,400}]
Plot[Evaluate[(Subtract@@@nostepdes)/.ndsol],{t,0,400}]





--- Paul Abbott <paul at physics.uwa.edu.au> wrote:
> In article <c9pfod$t27$1 at smc.vnet.net>,
>  sean_incali at yahoo.com (sean kim) wrote:
> 
> > still stepwise ode accuracy related question,
> but... 
> > 
> > consider two lists of three interpolating
> functions. 
> > 
> > like below.
> > 
> > k1 = 1/10; k2 = 1/20; 
> > 
> > a0[t_] :=  0.5 /; t < 0 ;
> > a0[t_] := 0.5 /; 0 <= t <=20 ;
> > a0[t_] :=  0.5 /; 20 <= t <=60 ;
> > a0[t_] := 0.5 /; 60 <= t <=400;
> > 
> > a = 0.5;
> > 
> > ndsolstep = NDSolve[{ b'[t] == -k2 b[t] y[t],
> x'[t] == -k1 a0[t]  x[t]
> > + k2 b[t] y[t], y'[t] == k1 a0[t] x[t] - k2 b[t]
> y[t],  b[0] == 1,
> > x[0] == 1, y[0] == 0}, {b, x, y}, {t, 0, 0, 20,
> 60, 400, 400}, Method
> > -> ExplicitRungeKutta][[1]]
> > 
> > ndsol = NDSolve[{ b'[t] == -k2 b[t] y[t], x'[t] ==
> -k1 a  x[t] + k2
> > b[t] y[t], y'[t] == k1 a x[t] - k2 b[t] y[t], 
> b[0] == 1, x[0] == 1,
> > y[0] == 0}, {b, x, y}, {t, 0, 400}][[1]]
> > 
> > 
> > will give two lists of 
> > 
> > {b -> InterpolatingFunction[{{0., 400.}}, <>], 
> > x -> InterpolatingFunction[{{0., 400.}}, <>], 
> > y -> InterpolatingFunction[{{0., 400.}}, <>]}
> > 
> > one from normal system and another from stepwise
> defined( which has
> > Rob Knapp's fix in it) they should be same if not
> very close.
> 
> And they are.
>  
> > I thought maybe I would take a value of
> interpolating function at time
> > poiints and subtract to see the differences. (to
> check how close they
> > are)
> 
> Instead, why not just substitute the solutions back
> into the 
> differential equations (Mathematica knows how to
> compute derivatives of 
> InterpolatingFunctions) and see how well they are
> satisfied:
> 
>   des = {b'[t] == -k2 b[t] y[t], x'[t] == -k1 a0[t]
> x[t] + k2 b[t] y[t], 
>    y'[t] == k1 a0[t] x[t] - k2 b[t] y[t]};
> 
>   SetOptions[Plot, PlotRange -> All];
> 
>   Plot[Evaluate[(Subtract @@@ des) /. ndsolstep],
> {t, 0, 400}];
> 
>   Plot[Evaluate[(Subtract @@@ des) /. ndsol], {t, 0,
> 400}];
> 
> Cheers,
> Paul
> 
> -- 
> Paul Abbott                                   Phone:
> +61 8 9380 2734
> School of Physics, M013                         Fax:
> +61 8 9380 1014
> The University of Western Australia      (CRICOS
> Provider No 00126G)         
> 35 Stirling Highway
> Crawley WA 6009                     
> mailto:paul at physics.uwa.edu.au 
> AUSTRALIA                           
> http://physics.uwa.edu.au/~paul
>


  • Prev by Date: Re: subtract a list of interpolating functions from another
  • Next by Date: Disabling Shadow Errors?
  • Previous by thread: Re: subtract a list of interpolating functions from another
  • Next by thread: Re: subtract a list of interpolating functions from another