[Date Index]
[Thread Index]
[Author Index]
Re: Controlling function arguments
*To*: mathgroup at smc.vnet.net
*Subject*: [mg48828] Re: Controlling function arguments
*From*: "Dr. Wolfgang Hintze" <weh at snafu.de>
*Date*: Fri, 18 Jun 2004 02:12:50 -0400 (EDT)
*References*: <carkcp$r9g$1@smc.vnet.net>
*Sender*: owner-wri-mathgroup at wolfram.com
Virgil,
the function NumberVectorQ[x] gives True if both x is a vector and if
all components of x are numbers, and False otherwise. It is a good
example of two basic list operations in Mathematica, Map and Apply.
In[1]:=
NumberVectorQ[x_] := VectorQ[x] && And @@ NumberQ /@ x;
Example
In[29]:=
x = {1, 3, 2};
In[28]:=
VectorQ[x]
Out[28]=
True
The next expression gives True if all components of x are numbers
And @@ NumberQ /@ x
Out[20]=
True
Let's analyse it step by step going from right to left:
step 1)
f/@x (which is a shortcut for Map[f,x]) applies function f to every
component of x. Hence
In[21]:=
y = Map[NumberQ, x]
Out[21]=
{True, True, True}
Step 2)
f@@y (which is a shortcut for Apply[f,y]) sets the list y as a parameter
list of function f. Hence
In[22]:=
z = Apply[And, y]
Out[22]=
True
and, finally
In[23]:=
VectorQ[x] && z
Out[23]=
True
functionx[k_Integer?Positive, v_?NumberVectorQ,...] defines a function f
with a parameter k that must be a positive integer, and a parameter v
that must be a vector having only numbers as components. If the
parameters do not all fit to these conditions the function f is returned
unevaluated.
Hope this helps,
Wolfgang
Virgil Stokes wrote:
> I found the following Mathematica code:
>
> NumberVectorQ[x_] := VectorQ[x] && And @@ NumberQ /@ x;
> functionx[k_Integer?Positive, v_?NumberVectorQ, w_?NumberVectorQ,
> q_?NumberVectorQ] := .....
>
> where, I have left out the body of this function (functionx). What does
> the first line actually accomplish?
>
> --V. Stokes
>
>
>
>
>
Prev by Date:
**Re: Integration error in 5.0?**
Next by Date:
**Re: Numerical integration inside numerical integration**
Previous by thread:
**Re: Controlling function arguments**
Next by thread:
**Numerical integration inside numerical integration**
| |