Re: Reassembling Fourier Transforms
- To: mathgroup at smc.vnet.net
- Subject: [mg48929] Re: Reassembling Fourier Transforms
- From: astanoff_otez_ceci at yahoo.fr (astanoff)
- Date: Thu, 24 Jun 2004 05:35:46 -0400 (EDT)
- References: <cb0ut2$r67$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Lee Fisher wrote: > I am trying to turn a list of points into a function, and one of the > ways I thought to do this was to use Fourier to find the frequency > components of the list, and then to Create a sum of exponentials [...] Why not simply use Interpolation? (InterpolatingFunction is compatable with NDSolve) For instance : In[1]:=<<Statistics`ContinuousDistributions` In[2]:=f[x_]:=Random[NormalDistribution[0,1]] In[3]:=tf=Table[{x,f[x]},{x,1,20}]; In[4]:=c=Interpolation[tf, InterpolationOrder -> 1]; In[5]:= sol=First@NDSolve[y'[u] == y[u]/10+c[u] && y[1] == 1,y[u],{u,1,20}] Out[5]={y[u] -> InterpolatingFunction[{{1.,20.}},<>][u]} In[6]:=g[u_]=y[u] /. sol Out[6]=InterpolatingFunction[{{1.,20.}},<>][u] hth -- 0% de pub! Que du bonheur et des vrais adhérents ! Vous aussi inscrivez-vous sans plus tarder!! Message posté à partir de http://www.gyptis.org, BBS actif depuis 1995.