RE: doing things on a procedural way and doing them on a functional way
- To: mathgroup at smc.vnet.net
- Subject: [mg46973] RE: [mg46952] doing things on a procedural way and doing them on a functional way
- From: "David Park" <djmp at earthlink.net>
- Date: Thu, 18 Mar 2004 01:24:58 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Pedro, I don't know if this is the most elegant solution, but it's a solution. I copied MapLevelParts out of the Tensorial package for use here. It will map a function onto a sequence of level parts in an expression. MapLevelParts[func_, part : {toppart___Integer?Positive, subp : {_Integer?Positive, eprest__Integer?Positive}}][expr_] := Module[{work, subparts, npos, null, i, nnull = Length[{eprest}]}, work = func@Part[expr, Sequence @@ part]; subparts = Thread[{toppart, subp}]; newparts = {work, Table[null[i], {i, 1, nnull}]} // Flatten; npos = Partition[Range[nnull + 1], 1]; ReplacePart[expr, newparts, subparts, npos] /. null[_] -> Sequence[] ] The following recursive routine generates all the parentheses partitions of your elements. Unfortunately it generates some duplicates so I take the Union. I use CircleTimes as the operator. gennext[inlist_List] := Module[ {wlist = inlist, l = Length[inlist], i}, Which[ l == 2, cases = Join[cases, {CircleTimes @@ wlist}], True, Do[gennext[MapLevelParts[CircleTimes @@ # &, {{i, i + 1}}][wlist]], {i, 1, l - 1}]]] cases = {}; gennext[{a, b, c, d, e}]; cases = Union[cases] I'm not displaying the output because of all the CircleTimes, but if we convert CircleTimes back to List we obtain {{a, {b, {c, {d, e}}}}, {a, {b, {{c, d}, e}}}, {a, {{b, c}, {d, e}}}, {a, {{b, {c, d}}, e}}, {a, {{{b, c}, d}, e}}, {{a, b}, {c, {d, e}}}, {{a, b}, {{c, d}, e}}, {{a, {b, c}}, {d, e}}, {{a, {b, {c, d}}}, e}, {{a, {{b, c}, d}}, e}, {{{a, b}, c}, {d, e}}, {{{a, b}, {c, d}}, e}, {{{a, {b, c}}, d}, e}, {{{{a, b}, c}, d}, e}} David Park djmp at earthlink.net http://home.earthlink.net/~djmp/ From: Pedrito [mailto:pedrito6 at softhome.net] To: mathgroup at smc.vnet.net Hello Mathgroup! I wanted to figure how to obtain all the possible combinations of five numbers and four non-conmutative non-asociative operations. This means: if we have numbers: a b c d e and the non-conmutative non-asociative operation: ? it's possible to make the following (different) expressions: a ? (b ? (c ? (d ? e))) a ? (b ? (c ? d) ? e)) ... (a ? b) ? (c ? d) ? e For practical reasons you can think that the operation ? is ^ (power). I have already obtained (by hand) all the possible combinations: lst={{a, {b, {c, {d, e}}}}, {a, {b, {{c, d}, e}}}, {a, {{b, c}, {d, e}}}, {a, {{b, {c, d}}, e}}, {a, {{{b, c}, d}, e}}, {{a, b}, {c, {d, e}}}, {{a, b}, {{c, d}, e}}, {{a, {b, c}}, {d, e}}, {{{a, b}, c}, {d, e}}, {{a, {b, {c, d}}}, e}, {{a, {{b, c}, d}}, e}, {{{a, b}, {c, d}}, e}, {{{a, {b, c}}, d}, e}, {{{{a, b}, c}, d}, e}} And then I transformed them into an expressions by: Module[{x = 1}, ToExpression[ StringReplace[ ToString[#1], {"{" -> "(", "}" -> ")", "," :> {"^", "^", "^", "^"}\[LeftDoubleBracket] x++\[RightDoubleBracket]}]]] & /@ lst If you can help me to do it better... Pedro L.