[Date Index]
[Thread Index]
[Author Index]
RE: doing things on a procedural way and doing them on a functional way
*To*: mathgroup at smc.vnet.net
*Subject*: [mg46973] RE: [mg46952] doing things on a procedural way and doing them on a functional way
*From*: "David Park" <djmp at earthlink.net>
*Date*: Thu, 18 Mar 2004 01:24:58 -0500 (EST)
*Sender*: owner-wri-mathgroup at wolfram.com
Pedro,
I don't know if this is the most elegant solution, but it's a solution. I
copied MapLevelParts out of the Tensorial package for use here. It will map
a function onto a sequence of level parts in an expression.
MapLevelParts[func_,
part : {toppart___Integer?Positive,
subp : {_Integer?Positive, eprest__Integer?Positive}}][expr_] :=
Module[{work, subparts, npos, null, i, nnull = Length[{eprest}]},
work = func@Part[expr, Sequence @@ part];
subparts = Thread[{toppart, subp}];
newparts = {work, Table[null[i], {i, 1, nnull}]} // Flatten;
npos = Partition[Range[nnull + 1], 1];
ReplacePart[expr, newparts, subparts, npos] /. null[_] -> Sequence[]
]
The following recursive routine generates all the parentheses partitions of
your elements. Unfortunately it generates some duplicates so I take the
Union. I use CircleTimes as the operator.
gennext[inlist_List] :=
Module[
{wlist = inlist, l = Length[inlist], i},
Which[
l == 2, cases = Join[cases, {CircleTimes @@ wlist}],
True,
Do[gennext[MapLevelParts[CircleTimes @@ # &, {{i, i + 1}}][wlist]],
{i,
1, l - 1}]]]
cases = {};
gennext[{a, b, c, d, e}];
cases = Union[cases]
I'm not displaying the output because of all the CircleTimes, but if we
convert CircleTimes back to List we obtain
{{a, {b, {c, {d, e}}}},
{a, {b, {{c, d}, e}}},
{a, {{b, c}, {d, e}}},
{a, {{b, {c, d}}, e}},
{a, {{{b, c}, d}, e}},
{{a, b}, {c, {d, e}}},
{{a, b}, {{c, d}, e}},
{{a, {b, c}}, {d, e}},
{{a, {b, {c, d}}}, e},
{{a, {{b, c}, d}}, e},
{{{a, b}, c}, {d, e}},
{{{a, b}, {c, d}}, e},
{{{a, {b, c}}, d}, e},
{{{{a, b}, c}, d}, e}}
David Park
djmp at earthlink.net
http://home.earthlink.net/~djmp/
From: Pedrito [mailto:pedrito6 at softhome.net]
To: mathgroup at smc.vnet.net
Hello Mathgroup!
I wanted to figure how to obtain all the possible combinations of five
numbers and four non-conmutative non-asociative operations.
This means:
if we have numbers: a b c d e
and the non-conmutative non-asociative operation: ?
it's possible to make the following (different) expressions:
a ? (b ? (c ? (d ? e)))
a ? (b ? (c ? d) ? e))
...
(a ? b) ? (c ? d) ? e
For practical reasons you can think that the operation ? is ^ (power).
I have already obtained (by hand) all the possible combinations:
lst={{a, {b, {c, {d, e}}}}, {a, {b, {{c, d}, e}}}, {a, {{b, c}, {d,
e}}}, {a, {{b, {c, d}}, e}}, {a, {{{b, c}, d}, e}}, {{a, b}, {c, {d, e}}},
{{a, b}, {{c, d}, e}}, {{a, {b, c}}, {d, e}}, {{{a, b}, c}, {d, e}}, {{a,
{b, {c, d}}}, e}, {{a, {{b, c}, d}}, e}, {{{a, b}, {c, d}}, e}, {{{a, {b,
c}}, d}, e}, {{{{a, b}, c}, d}, e}}
And then I transformed them into an expressions by:
Module[{x = 1},
ToExpression[
StringReplace[
ToString[#1], {"{" -> "(", "}" -> ")",
"," :> {"^", "^", "^", "^"}\[LeftDoubleBracket]
x++\[RightDoubleBracket]}]]] & /@ lst
If you can help me to do it better...
Pedro L.
Prev by Date:
**RE: doing things on a procedural way and doing them on a functional way**
Next by Date:
**RE: List of Variables and manipulating them ...**
Previous by thread:
**RE: doing things on a procedural way and doing them on a functional way**
Next by thread:
**RE: Re: doing things on a procedural way and doing them on a functional way**
| |