Re: Derivative of Sum
- To: mathgroup at smc.vnet.net
- Subject: [mg47976] Re: Derivative of Sum
- From: "Michal Kvasnicka" <michal.kvasnicka at _NO_ZpaMM-.quick.cz>
- Date: Tue, 4 May 2004 01:08:56 -0400 (EDT)
- References: <c6q28u$p5l$1@smc.vnet.net> <c6updn$b9c$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
No, it not what I need. I am looking for general derivative of the general sum. Michal "Brian Higgins" <bghiggins at ucdavis.edu> pí¹e v diskusním pøíspìvku news:c6updn$b9c$1 at smc.vnet.net... > Michal, > > I s this what you want: > > S[p_] := Sum[a[k]b[k], {k, 1, p - 1}] + a[p]b[p] + Sum[a[k]b[k], {k, p > + 1, n} ] > > In[3]:=D[S[5],b[5]] > > Out[3]=a[5] > > Note that differentiating a series term-by-term may not always give > you the incorrect answer. > > Cheers, > > Brian > > > "Michal Kvasnicka" <michal.kvasnicka at _NO_ZpaMM-.quick.cz> wrote in message news:<c6q28u$p5l$1 at smc.vnet.net>... > > Is Mathematica 5 able to compute the folowing problem: > > \!\(S = Sum[\(a\_k\) b\_k, {k, 1, n}]\) > > > > then should be > > > > \!\(\[PartialD]\_\(a\_i\)\ S = b\_i\) but the Mathematica gives 0. > > > > Thanks, Michal >
- Follow-Ups:
- Re: Re: Derivative of Sum
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: Re: Derivative of Sum