Re: matrix operations

• To: mathgroup at smc.vnet.net
• Subject: [mg48419] Re: matrix operations
• From: Erich Neuwirth <erich.neuwirth at univie.ac.at>
• Date: Sat, 29 May 2004 03:06:39 -0400 (EDT)
• References: <c0qim0\$k5s\$1@smc.vnet.net>
• Sender: owner-wri-mathgroup at wolfram.com

```DiffMat[n_, k_] := Table[KroneckerDelta[i, j - 1] -
KroneckerDelta[i, j], {i, 1, n - 1}, {j, 1, k}]

mat = Array[x, {4, 4}]
DiffMat[4,4].mat

is a linear algebra way of doing it.

David Park wrote:

> Paolo,
>
> The wonders of functional programming! Here's an example.
>
> mat = Array[x, {4, 4}]
>
> Partition[mat, 2, 1]
> (answer = #2 - #1 & @@@ %) // MatrixForm
>
> @@@ is the Apply function, mapped onto the first level of mat. #2 - #1& is a
> pure function that subtracts the second argument from the first argument.
>
> David Park
>
>
> -----Original Message-----
> From: paolo tarpanelli [mailto:tarpanelli at libero.it]
To: mathgroup at smc.vnet.net
> Subject: [mg48419]  matrix operations
>
>
> If I have a matrix
>
> a={x[[1,1]],x[[1,2]],...,x[[1,n]]}
>     {x[[2,1]],x[[2,2]],...,x[[2,n]]}
>             .
>             .
>             .
>     {x[[m,1]],x[[m,2]],...,x[[m,n]]}
>
> how can I compute the difference between any element and the previous for
> each column :
>
> aa={x[[2,1]]-x[[1,1]], x[[2,2]]-x[[1,2]],...,x[[2,n]]-x[[1,n]]}
>       {x[[3,1]]-x[[2,1]], x[[3,2]]-x[[2,2]],...,x[[3,n]]-x[[2,n]]}
>             .
>             .
>             .
>       {x[[m,1]]-x[[m-1,1]],x[[m,2]]-x[[m-1,2]],...,x[[m,n]]-x[[m-1,n]]}
>
> ----------------------------------------------------------------------------
> --------------------------
>
> I built this code but it does not work
>
> r=Array[0,{m,n}]
> For[j=1,j=n,j++
>        r[[i,j]]=Table[a[[i+1,j]]-a[[i,j]],{i,1,m-1,1}]]
>
> thanks
>
> Paolo
>
> ----------------
>
>

```

• Prev by Date: Re: stepwise ode. why does this fail?
• Next by Date: Re: S_4 elements
• Previous by thread: checking accuracy with stepwise ode.