Re: matrix operations
- To: mathgroup at smc.vnet.net
- Subject: [mg48419] Re: matrix operations
- From: Erich Neuwirth <erich.neuwirth at univie.ac.at>
- Date: Sat, 29 May 2004 03:06:39 -0400 (EDT)
- References: <c0qim0$k5s$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
DiffMat[n_, k_] := Table[KroneckerDelta[i, j - 1] - KroneckerDelta[i, j], {i, 1, n - 1}, {j, 1, k}] mat = Array[x, {4, 4}] DiffMat[4,4].mat is a linear algebra way of doing it. David Park wrote: > Paolo, > > The wonders of functional programming! Here's an example. > > mat = Array[x, {4, 4}] > > Partition[mat, 2, 1] > (answer = #2 - #1 & @@@ %) // MatrixForm > > @@@ is the Apply function, mapped onto the first level of mat. #2 - #1& is a > pure function that subtracts the second argument from the first argument. > > David Park > djmp at earthlink.net > http://home.earthlink.net/~djmp/ > > > -----Original Message----- > From: paolo tarpanelli [mailto:tarpanelli at libero.it] To: mathgroup at smc.vnet.net > Subject: [mg48419] matrix operations > > > If I have a matrix > > a={x[[1,1]],x[[1,2]],...,x[[1,n]]} > {x[[2,1]],x[[2,2]],...,x[[2,n]]} > . > . > . > {x[[m,1]],x[[m,2]],...,x[[m,n]]} > > how can I compute the difference between any element and the previous for > each column : > > aa={x[[2,1]]-x[[1,1]], x[[2,2]]-x[[1,2]],...,x[[2,n]]-x[[1,n]]} > {x[[3,1]]-x[[2,1]], x[[3,2]]-x[[2,2]],...,x[[3,n]]-x[[2,n]]} > . > . > . > {x[[m,1]]-x[[m-1,1]],x[[m,2]]-x[[m-1,2]],...,x[[m,n]]-x[[m-1,n]]} > > ---------------------------------------------------------------------------- > -------------------------- > > I built this code but it does not work > > r=Array[0,{m,n}] > For[j=1,j=n,j++ > r[[i,j]]=Table[a[[i+1,j]]-a[[i,j]],{i,1,m-1,1}]] > > thanks > > Paolo > > ---------------- > >