Re: nonlinear programming with differential-algebraic constraints (2)
- To: mathgroup at smc.vnet.net
- Subject: [mg52110] Re: nonlinear programming with differential-algebraic constraints (2)
- From: "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de>
- Date: Thu, 11 Nov 2004 04:52:11 -0500 (EST)
- Organization: Uni Leipzig
- References: <cmsok4$b72$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
f[t_] := Exp[-0.1*t] + Random[Real, {0, 0.1}]; data = {#, Evaluate[f[#]]} & /@ Table[t, {t, 0, 10, 1}]; model[a_] := model[a]= y /. NDSolve[{y'[t] == -a*y[t], y[0] == 1} /. a -> 0.05, y, {t, 0, 10}][[1]]; fun[a_?NumericQ] := Module[{ff}, ff = model[a]; Plus @@ ((ff[#[[1]]] - #[[2]])^2 & /@ data) ] NMinimize[{fun[a], a > 0}, a, Method -> {"DifferentialEvolution"}, StepMonitor :> Print[squares, a], WorkingPrecision -> 8] Regards Jens "Joerg Schaber" <schaber at molgen.mpg.de> schrieb im Newsbeitrag news:cmsok4$b72$1 at smc.vnet.net... >I made a little example to illustrate the problem: > > I want to fit a model which is stated as a system of differenttial > equations to some data. > > (* curve to be fitted *) > f[t_]:=Exp[-0.1*t]+Random[Real,{0,0.1}]; > data={#,Evaluate[f[#]]}&/@Table[t,{t,0,10,1}]; > > ListPlot[data,PlotStyle\[Rule]{RGBColor[0,0.2,0.8],PointSize[0.02]}]; > > (* the parameter 0.1 is to be found *) > (* the model as a differential equations *) > model:=NDSolve[{y'[t]==-a*y[t],y[0]==1}/.a->0.05,y,{t,0,10}]; > > (* minimizing sum of squares *) > NMinimize[{squares=Plus@@Table[(Table[{#,y[t]/.Evaluate[model][[1]]/.t->#}&/@ > Table[t,{t, 0, 10, 1}]][[i, 2]]-data[[i,2]])^2, > {i, Length[data]}], a > 0}, a, > Method -> {"DifferentialEvolution"}, > StepMonitor :> Print[squares, a], > WorkingPrecision -> 8] > > > The main problem seems to be that the differential equation does not get > evaluated in each step but only once. > > So if anybody could make this example work that would be great. > > best, > > joerg >