Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2004
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: neat sums and pattered randomness

  • To: mathgroup at smc.vnet.net
  • Subject: [mg52248] Re: neat sums and pattered randomness
  • From: Roger Bagula <tftn at earthlink.net>
  • Date: Wed, 17 Nov 2004 02:20:16 -0500 (EST)
  • References: <cnbn5l$9vq$1@smc.vnet.net>
  • Reply-to: tftn at earthlink.net
  • Sender: owner-wri-mathgroup at wolfram.com

I thought to use a method I just developed for maps on this pair of 
iterations:
(* Pair Iteration gives a  Line :y=-x+1*)
x[n_]:=x[n]=Mod[x[n-1]*2+If[Mod[n,2]==1,n/(n+1),1/(n+1)],1]
y[n_]:=y[n]=Mod[y[n-1]*2+If[Mod[n,2]==1,1/(n+1),n/(n+1)],1]
x[0]=0;y[0]=0;
a0=Table[{x[n],y[n]},{n,0, 200}];
ListPlot[a0,PlotJoined->True, PlotRange->All]
Plot[-x+1,{x,0,1}]

Roger Bagula wrote:

>In my fractal nonlinear IFS work I have used the rational pair 
>(n/(n+1),1/(n+1))
>to produce several new fractals.
>I know that it behaves very much in IFS like a nonlinear Cantor set.
>I made up Log[2] like sums alternating the pairs.
>The result is two irrational numbers that are summed to one.
>In the iterations based on these sum functions,
>I get patterned noise, but they still give a sorted slope of one.
>The result appears to be a paired noise pattern.
>
>(* a pair of sums from rational pairs (n/(1+n),1/(n+1))*)
>(* 
>1st=0.5224031171170045693773071024046350601893524864083449381053044765826974398161552455727317173783003561708929280568165560107397662133885113895083716587179298436322129249418632659176904330363338074199274*)
>(* 
>2nd=0.4775968828829954306226928975953649398106475135916550618946949011157747740696740400208629046092755848038901998264701338775987548167280850721475099467997575850060913783991812218340970953593189635761664*)
>(*1st+2nd=1*)
>f[n_]=If[Mod[n,2]==1,1/((n+1)*2^n),n/((n+1)*2^n)]
>digits=200
>a=Table[N[f[n],digits],{n,1,digits}];
>b=N[Apply[Plus,a],digits]
>Clear[f,a,b]
>f[n_]=If[Mod[n,2]==1,n/((n+1)*2^n),1/((n+1)*2^n)]
>a=Table[N[f[n],digits],{n,1,digits}];
>b=N[Apply[Plus,a],digits]
>
>(* iterations based on these that have patterns in them*)
>x[n_]:=x[n]=Mod[x[n-1]*2+If[Mod[n,2]==1,1/(n+1),n/(n+1)],1]
>    x[0]=0
>Clear[a,b]
>a=Table[N[x[n],digits],{n,0,digits}];
>ListPlot[a,PlotJoined->True,PlotRange->All]   
>b=Sort[Table[N[x[n],digits],{n,0,digits}]];
>ListPlot[b,PlotJoined->True,PlotRange->All]
>Fit[digits*b,{1,x},x]
>Clear[x]
>x[n_]:=x[n]=Mod[x[n-1]*2+If[Mod[n,2]==1,n/(n+1),1/(n+1)],1]
>    x[0]=0
>Clear[a,b]
>a=Table[N[x[n],digits],{n,0,digits}];
>ListPlot[a,PlotJoined->True,PlotRange->All]   
>b=Sort[Table[N[x[n],digits],{n,0,digits}]];
>ListPlot[b,PlotJoined->True,PlotRange->All]
>Fit[digits*b,{1,x},x]
>Respectfully, Roger L. Bagula
>
>tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :
>alternative email: rlbtftn at netscape.net
>URL :  http://home.earthlink.net/~tftn
>
>  
>

-- 
Respectfully, Roger L. Bagula
tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :
alternative email: rlbtftn at netscape.net
URL :  http://home.earthlink.net/~tftn



  • Prev by Date: RE: Re: Re: 64 bit cpu and Mathematica on windows.
  • Next by Date: Re: plot Point with several shapes ?
  • Previous by thread: Re: neat sums and pattered randomness
  • Next by thread: plot Point with several shapes ?