Re: neat sums and pattered randomness
- To: mathgroup at smc.vnet.net
- Subject: [mg52248] Re: neat sums and pattered randomness
- From: Roger Bagula <tftn at earthlink.net>
- Date: Wed, 17 Nov 2004 02:20:16 -0500 (EST)
- References: <cnbn5l$9vq$1@smc.vnet.net>
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
I thought to use a method I just developed for maps on this pair of iterations: (* Pair Iteration gives a Line :y=-x+1*) x[n_]:=x[n]=Mod[x[n-1]*2+If[Mod[n,2]==1,n/(n+1),1/(n+1)],1] y[n_]:=y[n]=Mod[y[n-1]*2+If[Mod[n,2]==1,1/(n+1),n/(n+1)],1] x[0]=0;y[0]=0; a0=Table[{x[n],y[n]},{n,0, 200}]; ListPlot[a0,PlotJoined->True, PlotRange->All] Plot[-x+1,{x,0,1}] Roger Bagula wrote: >In my fractal nonlinear IFS work I have used the rational pair >(n/(n+1),1/(n+1)) >to produce several new fractals. >I know that it behaves very much in IFS like a nonlinear Cantor set. >I made up Log[2] like sums alternating the pairs. >The result is two irrational numbers that are summed to one. >In the iterations based on these sum functions, >I get patterned noise, but they still give a sorted slope of one. >The result appears to be a paired noise pattern. > >(* a pair of sums from rational pairs (n/(1+n),1/(n+1))*) >(* >1st=0.5224031171170045693773071024046350601893524864083449381053044765826974398161552455727317173783003561708929280568165560107397662133885113895083716587179298436322129249418632659176904330363338074199274*) >(* >2nd=0.4775968828829954306226928975953649398106475135916550618946949011157747740696740400208629046092755848038901998264701338775987548167280850721475099467997575850060913783991812218340970953593189635761664*) >(*1st+2nd=1*) >f[n_]=If[Mod[n,2]==1,1/((n+1)*2^n),n/((n+1)*2^n)] >digits=200 >a=Table[N[f[n],digits],{n,1,digits}]; >b=N[Apply[Plus,a],digits] >Clear[f,a,b] >f[n_]=If[Mod[n,2]==1,n/((n+1)*2^n),1/((n+1)*2^n)] >a=Table[N[f[n],digits],{n,1,digits}]; >b=N[Apply[Plus,a],digits] > >(* iterations based on these that have patterns in them*) >x[n_]:=x[n]=Mod[x[n-1]*2+If[Mod[n,2]==1,1/(n+1),n/(n+1)],1] > x[0]=0 >Clear[a,b] >a=Table[N[x[n],digits],{n,0,digits}]; >ListPlot[a,PlotJoined->True,PlotRange->All] >b=Sort[Table[N[x[n],digits],{n,0,digits}]]; >ListPlot[b,PlotJoined->True,PlotRange->All] >Fit[digits*b,{1,x},x] >Clear[x] >x[n_]:=x[n]=Mod[x[n-1]*2+If[Mod[n,2]==1,n/(n+1),1/(n+1)],1] > x[0]=0 >Clear[a,b] >a=Table[N[x[n],digits],{n,0,digits}]; >ListPlot[a,PlotJoined->True,PlotRange->All] >b=Sort[Table[N[x[n],digits],{n,0,digits}]]; >ListPlot[b,PlotJoined->True,PlotRange->All] >Fit[digits*b,{1,x},x] >Respectfully, Roger L. Bagula > >tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : >alternative email: rlbtftn at netscape.net >URL : http://home.earthlink.net/~tftn > > > -- Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : alternative email: rlbtftn at netscape.net URL : http://home.earthlink.net/~tftn