       Re: Re: Non-algebraic solution

• To: mathgroup at smc.vnet.net
• Subject: [mg52473] Re: [mg52429] Re: Non-algebraic solution
• From: DrBob <drbob at bigfoot.com>
• Date: Sun, 28 Nov 2004 01:07:10 -0500 (EST)
• References: <co6m44\$qh1\$1@smc.vnet.net> <200411270640.BAA17102@smc.vnet.net>
• Sender: owner-wri-mathgroup at wolfram.com

```We can take that method quite a bit farther, too:

plot = Plot[-(Log[y/2] + 3*Log[5 + y/7]), {y, 0, 10}, AxesLabel -> {y, x}];
data = Sort[Reverse /@ First@Cases[plot, Line[a_] -> a, Infinity]];
ListPlot[data]
interp = Interpolation@data;
Plot[interp@x, {x, -7, 10}, PlotRange -> All, AxesLabel -> {x, y}];

Bobby

On Sat, 27 Nov 2004 01:40:22 -0500 (EST), astanoff <astanoff_otez_ceci at yahoo.fr> wrote:

> B.Ravinder wrote:
>> Dear all,
>> I want to plot the following type of logarithmic equation having
>> dependent variable y and independent variable x.
>> Log[y/a] + b*Log[c+y/d] = -x
>> where a,b,c and d are some arbitrary constants.
> [...]
> Why don't you plot x against y?
> For instance :
> Plot[-(Log[y/2]+3*Log[5+y/7]),{y,0,10},AxesLabel->{y,x}]
> looks like a nice flipped exponential
>v.a.
>
> --
> 0% de pub! Que du bonheur et des vrais adhérents !
> Vous aussi inscrivez-vous sans plus tarder!!
> Message posté à partir de http://www.gyptis.org, BBS actif depuis 1995.
>
>
>
>
>
>

--
DrBob at bigfoot.com
www.eclecticdreams.net

```

• Prev by Date: Re: Re: Boolean Type
• Next by Date: Re: On constants and D's behaviour
• Previous by thread: Re: Non-algebraic solution
• Next by thread: Re: Non-algebraic solution