Re: Integration of piecewise function

*To*: mathgroup at smc.vnet.net*Subject*: [mg52481] Re: [mg52463] Integration of piecewise function*From*: DrBob <drbob at bigfoot.com>*Date*: Mon, 29 Nov 2004 01:22:28 -0500 (EST)*References*: <200411280606.BAA06619@smc.vnet.net>*Reply-to*: drbob at bigfoot.com*Sender*: owner-wri-mathgroup at wolfram.com

ecks[x_] = UnitStep[x] - 2*UnitStep[x - 2] + UnitStep[x - 4]; Integrate[ecks[x], {x, -Infinity, Infinity}] 0 or (with version 5.1): ecks[x_] = Piecewise[{{1, 0 < x < 2}, {-1, 2 < x < 4}}]; Integrate[ecks[x], {x, -Infinity, Infinity}] 0 Bobby On Sun, 28 Nov 2004 01:06:46 -0500 (EST), Riccardo <ricky at nospam.it> wrote: > <inviati & spediti> > > I just defined a function like this: > > X[\[Omega]_] := 0 /; \[Omega] < 0; > X[\[Omega]_] := 1 /; 0 < \[Omega] < 2; > X[\[Omega]_] := -1 /; 2 < \[Omega] < 4; > X[\[Omega]_] := 0 /; \[Omega] > 4; > > Is it possible now to integrate it from -infinity to +infinity? I've > already tried and it doesn't give me the result. > Thanks. > > Luca > > > > -- DrBob at bigfoot.com www.eclecticdreams.net

**References**:**Integration of piecewise function***From:*Riccardo <ricky@nospam.it>