pair sums applied to trignometry sums
- To: mathgroup at smc.vnet.net
- Subject: [mg52487] pair sums applied to trignometry sums
- From: Roger Bagula <tftn at earthlink.net>
- Date: Mon, 29 Nov 2004 01:22:34 -0500 (EST)
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
I had used the mechanism with Bailey type of sequences and their sums in the work on b normalness in iteratives functions. It occurred to me that by adding the variable x , I could get functiond that used the nonlinear Cantor pair {1/(n+1),n/(n+1)} to split the sine and the cosine down the middle. The result is entirely new trignometric sum functions that converge very well. (* pair sums applied to trignometry sums: {1/(n+1),n/(n+1)} modulo 2 switched sums*) (* these sums break the trignometry of a circle into four functions instead of two*) (* these are subharmonic functions of a nonlinear Rational Cantor type*) fs[x_,n_]:= If[Mod[n,2]==1,(-1)^(n)*n*x^(2*n+1)/((n+1)*(2*n+1)!),(-1)^(n)* x^(2*n+1)/((n+1)*(2*n+1)!)] gs[x_,n_]:= If[Mod[n,2]==1,(-1)^n*x^(2*n+1)/((n+1)*(2*n+1)!),(-1)^n*n* x^(2*n+1)/((n+1)*(2*n+1)!)] fc[x_,n_]:= If[Mod[n,2]==1,(-1)^(n)*n*x^(2*n)/((n+1)*(2*n)!),(-1)^(n)* x^(2*n)/((n+1)*(2*n)!)] gc[x_,n_]:= If[Mod[n,2]==1,(-1)^(n)*x^(2*n)/((n+1)*(2*n)!),(-1)^(n)*n* x^(2*n)/((n+1)*(2*n)!)] digits=100; fsin[x_]:=N[Sum[fs[x,n],{n,0,digits}]]; gsin[x_]:=N[Sum[gs[x,n],{n,0,digits}]] fcos[x_]:=N[Sum[fc[x,n],{n,0,digits}]] gcos[x_]:=N[Sum[gc[x,n],{n,0,digits}]] Plot[fsin[x],{x,-Pi,Pi}] Plot[fsin[x],{x,-Pi,Pi}] Plot[gsin[x],{x,-Pi,Pi}] Plot[fcos[x],{x,-Pi,Pi}] Plot[gcos[x],{x,-Pi,Pi}] Plot[(fsin[x]+gsin[x]),{x,-Pi,Pi},PlotRange->All] Plot[(fcos[x]+gcos[x]),{x,-Pi,Pi}] ParametricPlot[{fsin[x],gsin[x]},{x,-Pi,Pi}] ParametricPlot[{fcos[x],gcos[x]},{x,-Pi,Pi}] ParametricPlot[{fsin[x],fcos[x]},{x,-Pi,Pi}] ParametricPlot[{gsin[x],gcos[x]},{x,-Pi,Pi}] ParametricPlot[{fsin[x]+gsin[x],fcos[x]+gcos[x]},{x,-Pi,Pi},PlotRange->All] Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : alternative email: rlbtftn at netscape.net URL : http://home.earthlink.net/~tftn
- Follow-Ups:
- Re: pair sums applied to trignometry sums
- From: Daniel Lichtblau <danl@wolfram.com>
- Re: pair sums applied to trignometry sums