       Re: Root function

• To: mathgroup at smc.vnet.net
• Subject: [mg51043] Re: Root function
• From: p-valko at tamu.edu (Peter Valko)
• Date: Sat, 2 Oct 2004 03:18:47 -0400 (EDT)
• References: <cjj7gq\$bp2\$1@smc.vnet.net>
• Sender: owner-wri-mathgroup at wolfram.com

```Use a decimal point:

Eigensystem[{{-1., 1, 0, 0}, {1, -2, 1, 0}, {0, 1, -2, 0}, {0, 0, 1, 0}}]

Regards
Peter

Ben <bmauer at wisc.edu> wrote in message news:<cjj7gq\$bp2\$1 at smc.vnet.net>...
> When I try to diagonalize this matrix in mathematica 5:
> Eigensystem[{{-1, 1, 0, 0}, {1, -2, 1, 0}, {0, 1, -2, 0}, {0, 0, 1, 0}}]
> I get this ugly mess
>
> \!\({{Root[1 + 6\ #1 + 5\ #1\^2 + #1\^3 &, 1], Root[1 + 6\ #1 +
>              5\ #1\^2 + #1\^3 &, 2], Root[
>        1 + 6\ #1 + 5\ #1\^2 + #1\^3 &, 3], 0}, {{\(-1\) - 3\
>              Root[1 + 6\ #1 + 5\ #1\^2 + #1\^3 &, 1] - Root[1 + 6\ #1 +
>   etc etc etc
>
> Mathematica 4 gives me the right answer.
> How do I get v5 to not spit this out and what does it mean?

```

• Prev by Date: Re: Forcing functions
• Next by Date: Re: Conditinal Plots
• Previous by thread: Re: Root function
• Next by thread: Re: Root function