Re: Fitting question
- To: mathgroup at smc.vnet.net
- Subject: [mg51670] Re: Fitting question
- From: koopman at sfu.ca (Ray Koopman)
- Date: Wed, 27 Oct 2004 23:45:03 -0400 (EDT)
- References: <clco37$q7i$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
János <janos.lobb at yale.edu> wrote in message news:<clco37$q7i$1 at smc.vnet.net>... > I have two lists. One of them contains the running total of some > quantity per cycles, the other contains the totals per cycles. Here > they are: > > In[35]:= runtotpergen = {1, 23, 136, 568, 1735, 4382, 9099, > 16384, 25993, 36694, 47752, 58044, 66761, > 73534, 78429, 81753, 83750, 84873, 85482, > 85779, 85937, 86025, 86069, 86081, 86087} > > In[36]:= totpergen = {1, 22, 113, 432, 1167, 2647, 4717, 7285, > 9609, 10701, 11058, 10292, 8717, 6773, 4895, 3324, > 1997, 1123, 609, 297, 158, 88, 44, 12, 6} > > I am trying to find out the analytical form of a function which fits > best totpergen. [...] > > totpergen is not symmetrical, [...] > > I feel that Mathematica has the capability to find the best fitting > function without too much manual trials. Any hint how to do that ? This fits a shifted gamma density to the first three moments of totpergen. It handles the asymmetry naturally and fits well. In[1]:= n = Last[runtotpergen = {1, 23, 136, 568, 1735, 4382, 9099, 16384, 25993, 36694, 47752, 58044, 66761, 73534, 78429, 81753, 83750, 84873, 85482, 85779, 85937, 86025, 86069, 86081, 86087}] Out[1]= 86087 In[2]:= m = Length[totpergen = {1, 22, 113, 432, 1167, 2647, 4717, 7285, 9609, 10701, 11058, 10292, 8717, 6773, 4895, 3324, 1997, 1123, 609, 297, 158, 88, 44, 12, 6}] Out[2]= 25 In[3]:= <<Statistics`ContinuousDistributions`; #@GammaDistribution[a,b]&/@{Mean,Variance,Skewness} //InputForm Out[4]//InputForm= {a*b, a*b^2, 2/Sqrt[a]} In[5]:= f[a_,b_,c_,x_] := PDF[GammaDistribution[a,b],x-c] /; x >= c In[6]:= N@{mean = totpergen.Range[m]/n, var = totpergen.(Range[m]-mean)^2/n, skew = totpergen.(Range[m]-mean)^3/n * var^(-3/2)} {a = 4./skew^2, b = Sqrt[var/a], c = mean - a*b} Out[6]= {11.2316, 9.49626, 0.305409} Out[7]= {42.8842, 0.470574, -8.94861} In[8]:= Plot[n*f[a,b,c,x],{x,1,m}, Epilog->{PointSize[.015], Point/@Transpose@{Range@m,totpergen}}];
- Follow-Ups:
- Re: Re: Fitting question
- From: János <janos.lobb@yale.edu>
- Re: Re: Fitting question