Re: Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- To: mathgroup at smc.vnet.net
- Subject: [mg50654] Re: [mg50617] Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- From: "Peter S Aptaker" <psa at laplacian.co.uk>
- Date: Wed, 15 Sep 2004 07:54:23 -0400 (EDT)
- References: <200409130619.CAA14342@smc.vnet.net> <8C2E6168-0558-11D9-A0AA-000A95B4967A@akikoz.net> <00bc01c49991$4d2d5260$4f604ed5@lap5100> <656B2636-0588-11D9-A0AA-000A95B4967A@akikoz.net>
- Sender: owner-wri-mathgroup at wolfram.com
As I said at the end of the last e-mail , my real aim is to simplify this well known solution to a second order ODE for -1<z <1 and z >1 and w>0 . (z is the damping ratio and w the natural frequency). The aim is to demonstrate Mathemica with a familiar trivial problem! dum= -((z*(-((-1 + E^((2*t*Sqrt[w^2*(-1 + z^2)])/w^2))*w*z) + (1 + E^((2*t*Sqrt[w^2*(-1 + z^2)])/w^2))* Sqrt[w^2*(-1 + z^2)]))/(E^((t*(w*z + Sqrt[w^2*(-1 + z^2)]))/w^2)*R*w*Sqrt[w^2*(-1 + z^2)])) Noting Andrzej'ssuggestion I shall take dum2=ComplexExpand[Re[dum]]; The following take forever Simplify[Re[dum2],w>0,z>1] Simplify[Re[dum2],w>0,-1<z<1] ----- Original Message ----- From: "Andrzej Kozlowski" <andrzej at akikoz.net> To: mathgroup at smc.vnet.net <mathgroup at smc.vnet.net>; "Jon McLoone" <jonm at wolfram.co.uk> Subject: [mg50654] Re: [mg50617] Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1] > This is indeed most peculiar and looks like a bug. However as a > workaround I suggest adding ComplexExpand as follows: > > > FullSimplify[ComplexExpand[Im[Sqrt[-1 + eta^2]]], > -1 < eta < 1] > > > Sqrt[1 - eta^2] > > This also works in version 4.2. > > Andrzej > > On 13 Sep 2004, at 21:56, Peter S Aptaker wrote: > > > Sadly it does not work in M4.2 which I tend to use "for varous reasons" > > > > > > Back to M5 for now: > > > > Simplify[{Re[Sqrt[-1+eta^2]],Im[Sqrt[-1+eta^2]]},-1<eta<1] is fine > > > > Unfortunately: > > > > > > Simplify[Im[Sqrt[-1 + eta^2]],-1<eta<1] > > > > and > > > > Simplify[{Im[Sqrt[-1+eta^2]],Im[Sqrt[-1+eta^2]]},-1<eta<1] > > > > both leave the Im[] > > > > Thanks > > Peter > > ----- Original Message ----- > > From: "Andrzej Kozlowski" <andrzej at akikoz.net> To: mathgroup at smc.vnet.net > > To: "peteraptaker" <psa at laplacian.co.uk> > > Cc: <mathgroup at smc.vnet.net> > > Sent: Monday, September 13, 2004 8:43 AM > > Subject: [mg50654] Re: [mg50617] Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + > > eta^2]]}, eta<1] > > > > > *This message was transferred with a trial version of > > CommuniGate(tm) Pro* > > > On 13 Sep 2004, at 15:19, peteraptaker wrote: > > > > > > > *This message was transferred with a trial version of > > CommuniGate(tm) > > > > Pro* > > > > Have I missed something - my apologies if this is answered in a FAQ > > > > I want to make the simple Re and Im parts simplify properly? > > > > > > > > test = > > > > {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]} > > > > > > > > FullSimplify[test, eta > 1] > > > > gives*{Sqrt[-1 + eta^2], 0} > > > > > > > > But > > > > FullSimplify[test, eta < 1] > > > > gives > > > > {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]} > > > > > > > > Needs["Algebra`ReIm`"] does not seem to help > > > > > > > > Real numbers demonstrate what should happen: > > > > test) /. {{eta -> 0.1}, {eta -> 2}} > > > > {{0., 0.99498743710662}, {Sqrt[3], 0}} > > > > > > > > > > > > > > There is nothing really strange here, Mathematica simply can't give > > a > > > single simple expression that would cover all the cases that arise. > > So > > > you have to split it yourself, for example: > > > > > > > > > FullSimplify[test, eta < -1] > > > > > > > > > {Sqrt[eta^2 - 1], 0} > > > > > > FullSimplify[test, eta == -1] > > > > > > {0, 0} > > > > > > > > > FullSimplify[test, -1 < eta < 1] > > > > > > {0, Sqrt[1 - eta^2]} > > > > > > > > > FullSimplify[test, eta == 1] > > > > > > > > > {0, 0} > > > > > > > > > FullSimplify[test, 1 <= eta] > > > > > > > > > {Sqrt[eta^2 - 1], 0} > > > > > > > > > or, you can combine everything into just two cases: > > > > > > FullSimplify[test, eta $B":(B Reals && Abs[eta] < 1] > > > > > > {Re[Sqrt[eta^2 - 1]], Im[Sqrt[eta^2 - 1]]} > > > > > > > > > FullSimplify[test, eta $B":(B Reals && Abs[eta] >= 1] > > > > > > {Sqrt[eta^2 - 1], 0} > > > > > > In fact you do not really need FullSimplify, simple Simplify will do > > > just as well. > > > > > > > > > Andrzej Kozlowski > > > Chiba, Japan > > > http://www.akikoz.net/~andrzej/ > > > http://www.mimuw.edu.pl/~akoz/ > > > > > > > >
- References:
- Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- From: psa@laplacian.co.uk (peteraptaker)
- Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]