Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2005
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Re: Much faster ConvexHull implementation

  • To: mathgroup at smc.vnet.net
  • Subject: [mg55697] Re: [mg55661] Re: Much faster ConvexHull implementation
  • From: DrBob <drbob at bigfoot.com>
  • Date: Sun, 3 Apr 2005 05:51:07 -0400 (EDT)
  • References: <d1tvc0$rli$1@smc.vnet.net> <200503270742.CAA06233@smc.vnet.net> <opsoa9q5xpiz9bcq@monster.ma.dl.cox.net> <011401c53310$74dde680$6400a8c0@Main> <opsob4uhh3iz9bcq@monster.ma.dl.cox.net> <02a501c533ac$f76aa4c0$6400a8c0@Main> <opsoc793kbiz9bcq@monster.ma.dl.cox.net> <d2b547$79l$1@smc.vnet.net> <200504011037.FAA00480@smc.vnet.net>
  • Reply-to: drbob at bigfoot.com
  • Sender: owner-wri-mathgroup at wolfram.com

For the same code and data, I got several InterpolatingFunction::dmval errors (input lies outside the range, so extrapolation will be used) and this output:

{7, 8, 4, 9}

Bobby

On Fri, 1 Apr 2005 05:37:04 -0500 (EST), Ray Koopman <koopman at sfu.ca> wrote:

> "Carl K. Woll" <carl at woll2woll.com> wrote in message news:<d2b547$79l$1 at smc.vnet.net>...
>> [...]
>> At any rate, my version of convex hull can be found below. Any comments are
>> appreciated.
>>
>> Carl Woll
>>
>> It's best to make sure your default input format is InputForm when you copy
>> the function below to your notebook. At least on my machine, copying the
>> following code into a StandardForm input cell introduces invisible
>> multiplications so that executing the code results in Null^9 and the code
>> doesn't work.
>
> Here is what I pasted as Plain Text into an Input cell whose default
> FormatType is InputForm:
>
> In[1]:=
> convex[pts_] := Module[{spts, ss, toppts, bottompts},
>  spts = Sort[Transpose[{N[pts], Range[Length[pts]]}]];
>  ss = Drop[Split[spts[[All,1,1]]], {2, -2}];
>  If[spts[[Length[ss[[1]]],1]] === spts[[1,1]],
>   topleftindex = {};
>   topleft = spts[[1,1]]; ,
>   topleftindex = {spts[[Length[ss[[1]]],2]]};
>   topleft = spts[[Length[ss[[1]]],1]];
>  ];
>  If[spts[[-Length[ss[[-1]]],1]] === spts[[-1,1]],
>   bottomrightindex = {};
>   bottomright = spts[[-1,1]]; ,
>   bottomrightindex = {spts[[-Length[ss[[-1]]],2]]};
>   bottomright = spts[[-Length[ss[[-1]]],1]];
>  ];
>  topline = Interpolation[{topleft, spts[[-1,1]]}, InterpolationOrder
> -> 1];
>  bottomline = Interpolation[{spts[[1,1]], bottomright},
> InterpolationOrder -> 1];
>  toppts = Cases[spts, {{x_, y_}, _} /; y - topline[x] > 0];
>  bottompts = Cases[spts, {{x_, y_}, _} /; y - bottomline[x] < 0];
>  Join[
>   Reverse[toppart[toppts, topline, Null, spts[[-1,2]]]],
>   topleftindex,
>   bottompart[bottompts, bottomline, spts[[1,2]], Null],
>   bottomrightindex
>  ]
> ]
>
> toppart[pts_, line_, l_, r_] := Module[{newpt, leftline, rightline,
> leftpts, rightpts},
>  newpt = Ordering[pts[[All,1,2]] - line[pts[[All,1,1]]], -1][[1]];
>  leftline = Interpolation[{leftend[line], pts[[newpt,1]]},
> InterpolationOrder -> 1];
>  rightline = Interpolation[{pts[[newpt,1]], rightend[line]},
> InterpolationOrder -> 1];
>  leftpts = Cases[Take[pts, newpt - 1], {{x_, y_}, _} /; y - leftline[
> x] > 0];
>  rightpts = Cases[Drop[pts, newpt], {{x_, y_}, _} /; y - rightline[x]
>  > 0];
>  Join[ toppart[leftpts, leftline, l, pts[[newpt,2]]],
>    toppart[rightpts, rightline, pts[[newpt,2]], r]
>  ]
> ]
>
> toppart[{{pt_, index_Integer}}, line_, l_, r_] := {index, r}
> toppart[{}, line_, l_, r_] := {r}
>
> bottompart[pts_, line_, l_, r_] := Module[{newpt, leftline, rightline,
> leftpts, rightpts},
>  newpt = Ordering[pts[[All,1,2]] - line[pts[[All,1,1]]], 1][[1]];
>  leftline = Interpolation[{leftend[line], pts[[newpt,1]]},
> InterpolationOrder -> 1];
>  rightline = Interpolation[{pts[[newpt,1]], rightend[line]},
> InterpolationOrder -> 1];
>  leftpts = Cases[Take[pts, newpt - 1], {{x_, y_}, _} /; y - leftline[
> x] < 0];
>  rightpts = Cases[Drop[pts, newpt], {{x_, y_}, _} /; y - rightline[x]
>  < 0];
>  Join[ bottompart[leftpts, leftline, l, pts[[newpt,2]]],
>    bottompart[rightpts, rightline, pts[[newpt,2]], r]
>  ]
> ]
>
> bottompart[{{pt_, index_Integer}}, line_, l_, r_] := {l, index}
> bottompart[{}, line_, l_, r_] := {l}
>
> leftend[interp_] := {#1, interp[#1]}&[interp[[1,1,1]]]
> rightend[interp_] := {#1, interp[#1]}&[interp[[1,1,2]]]
>
> Here is the hull for 9 random points in the unit square:
>
> In[10]:= convex[pts =
> {{0.358243,0.363412},{0.105996,0.669358},{0.672295,0.0448138},
>  {0.0124393,0.672149},{0.728004,0.311669},{0.90424,0.545403},
>  {0.99939,0.160133},{0.749434,0.963945},{0.355428,0.0788455}}]
>
> Out[10]= {7,6,8,4,4,9,3}
>
> Such duplication occurs fairly often for random points.
> Is anyone else getting this? Have I copied something wrongly?
>
>
>
>



-- 
DrBob at bigfoot.com


  • Prev by Date: Re: Happy with v. 5.1.1. --- NMinimize, and MathOptimizer Professional
  • Next by Date: Re: Plot - where is y scale?
  • Previous by thread: Re: Much faster ConvexHull implementation
  • Next by thread: Re: Much faster ConvexHull implementation