Re: Re: Much faster ConvexHull implementation
- To: mathgroup at smc.vnet.net
- Subject: [mg55697] Re: [mg55661] Re: Much faster ConvexHull implementation
- From: DrBob <drbob at bigfoot.com>
- Date: Sun, 3 Apr 2005 05:51:07 -0400 (EDT)
- References: <d1tvc0$rli$1@smc.vnet.net> <200503270742.CAA06233@smc.vnet.net> <opsoa9q5xpiz9bcq@monster.ma.dl.cox.net> <011401c53310$74dde680$6400a8c0@Main> <opsob4uhh3iz9bcq@monster.ma.dl.cox.net> <02a501c533ac$f76aa4c0$6400a8c0@Main> <opsoc793kbiz9bcq@monster.ma.dl.cox.net> <d2b547$79l$1@smc.vnet.net> <200504011037.FAA00480@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
For the same code and data, I got several InterpolatingFunction::dmval errors (input lies outside the range, so extrapolation will be used) and this output: {7, 8, 4, 9} Bobby On Fri, 1 Apr 2005 05:37:04 -0500 (EST), Ray Koopman <koopman at sfu.ca> wrote: > "Carl K. Woll" <carl at woll2woll.com> wrote in message news:<d2b547$79l$1 at smc.vnet.net>... >> [...] >> At any rate, my version of convex hull can be found below. Any comments are >> appreciated. >> >> Carl Woll >> >> It's best to make sure your default input format is InputForm when you copy >> the function below to your notebook. At least on my machine, copying the >> following code into a StandardForm input cell introduces invisible >> multiplications so that executing the code results in Null^9 and the code >> doesn't work. > > Here is what I pasted as Plain Text into an Input cell whose default > FormatType is InputForm: > > In[1]:= > convex[pts_] := Module[{spts, ss, toppts, bottompts}, > spts = Sort[Transpose[{N[pts], Range[Length[pts]]}]]; > ss = Drop[Split[spts[[All,1,1]]], {2, -2}]; > If[spts[[Length[ss[[1]]],1]] === spts[[1,1]], > topleftindex = {}; > topleft = spts[[1,1]]; , > topleftindex = {spts[[Length[ss[[1]]],2]]}; > topleft = spts[[Length[ss[[1]]],1]]; > ]; > If[spts[[-Length[ss[[-1]]],1]] === spts[[-1,1]], > bottomrightindex = {}; > bottomright = spts[[-1,1]]; , > bottomrightindex = {spts[[-Length[ss[[-1]]],2]]}; > bottomright = spts[[-Length[ss[[-1]]],1]]; > ]; > topline = Interpolation[{topleft, spts[[-1,1]]}, InterpolationOrder > -> 1]; > bottomline = Interpolation[{spts[[1,1]], bottomright}, > InterpolationOrder -> 1]; > toppts = Cases[spts, {{x_, y_}, _} /; y - topline[x] > 0]; > bottompts = Cases[spts, {{x_, y_}, _} /; y - bottomline[x] < 0]; > Join[ > Reverse[toppart[toppts, topline, Null, spts[[-1,2]]]], > topleftindex, > bottompart[bottompts, bottomline, spts[[1,2]], Null], > bottomrightindex > ] > ] > > toppart[pts_, line_, l_, r_] := Module[{newpt, leftline, rightline, > leftpts, rightpts}, > newpt = Ordering[pts[[All,1,2]] - line[pts[[All,1,1]]], -1][[1]]; > leftline = Interpolation[{leftend[line], pts[[newpt,1]]}, > InterpolationOrder -> 1]; > rightline = Interpolation[{pts[[newpt,1]], rightend[line]}, > InterpolationOrder -> 1]; > leftpts = Cases[Take[pts, newpt - 1], {{x_, y_}, _} /; y - leftline[ > x] > 0]; > rightpts = Cases[Drop[pts, newpt], {{x_, y_}, _} /; y - rightline[x] > > 0]; > Join[ toppart[leftpts, leftline, l, pts[[newpt,2]]], > toppart[rightpts, rightline, pts[[newpt,2]], r] > ] > ] > > toppart[{{pt_, index_Integer}}, line_, l_, r_] := {index, r} > toppart[{}, line_, l_, r_] := {r} > > bottompart[pts_, line_, l_, r_] := Module[{newpt, leftline, rightline, > leftpts, rightpts}, > newpt = Ordering[pts[[All,1,2]] - line[pts[[All,1,1]]], 1][[1]]; > leftline = Interpolation[{leftend[line], pts[[newpt,1]]}, > InterpolationOrder -> 1]; > rightline = Interpolation[{pts[[newpt,1]], rightend[line]}, > InterpolationOrder -> 1]; > leftpts = Cases[Take[pts, newpt - 1], {{x_, y_}, _} /; y - leftline[ > x] < 0]; > rightpts = Cases[Drop[pts, newpt], {{x_, y_}, _} /; y - rightline[x] > < 0]; > Join[ bottompart[leftpts, leftline, l, pts[[newpt,2]]], > bottompart[rightpts, rightline, pts[[newpt,2]], r] > ] > ] > > bottompart[{{pt_, index_Integer}}, line_, l_, r_] := {l, index} > bottompart[{}, line_, l_, r_] := {l} > > leftend[interp_] := {#1, interp[#1]}&[interp[[1,1,1]]] > rightend[interp_] := {#1, interp[#1]}&[interp[[1,1,2]]] > > Here is the hull for 9 random points in the unit square: > > In[10]:= convex[pts = > {{0.358243,0.363412},{0.105996,0.669358},{0.672295,0.0448138}, > {0.0124393,0.672149},{0.728004,0.311669},{0.90424,0.545403}, > {0.99939,0.160133},{0.749434,0.963945},{0.355428,0.0788455}}] > > Out[10]= {7,6,8,4,4,9,3} > > Such duplication occurs fairly often for random points. > Is anyone else getting this? Have I copied something wrongly? > > > > -- DrBob at bigfoot.com
- References:
- Re: Much faster ConvexHull implementation
- From: koopman@sfu.ca (Ray Koopman)
- Re: Much faster ConvexHull implementation