Re: Re[2]: Re: Numerical accuracy of Hypergeometric2F1
- To: mathgroup at smc.vnet.net
- Subject: [mg55776] Re: Re[2]: [mg55743] Re: Numerical accuracy of Hypergeometric2F1
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Wed, 6 Apr 2005 03:11:04 -0400 (EDT)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
Integrate[x^100/(x+2),{x,0,1}] -(1317479497632370191204744890981021191757330191571416507401 36152126531/ 256324908932766460163727238732765821900) - 1267650600228229401496703205376*Log[2] + 1267650600228229401496703205376*Log[3] N[%] 2.81474976710656*^14 Need slightly higher precision N[%%,20] 0.00331118591352665013637705575274490534`20.000000000000004 NIntegrate[x^100/(x+2),{x,0,1}] 0.003311185913526502 Bob Hanlon > > From: Janos TOTH <jtoth at helka.iif.hu> To: mathgroup at smc.vnet.net > Date: 2005/04/05 Tue AM 07:27:22 EDT > CC: mathgroup at smc.vnet.net > Subject: [mg55776] Re[2]: [mg55743] Re: Numerical accuracy of Hypergeometric2F1 > > Hello Bob, > > I am sorry, I have mistyped something, > but I am interested in the integral on > [0,1] and _not_ on [0,2]! > > Thank you for your quick check. > > Janos > > Tuesday, April 5, 2005, 12:39:10 PM, you wrote: > > BH> Works on my version > > BH> $Version > > BH> 5.1 for Mac OS X (January 27, 2005) > > BH> Integrate[x^100/(x+2),{x,0,2}] > > BH> -(9503343334714997237896336168082647022052771377490530168503 > BH> 53071587328/ > BH> 1089380862964257455695840764614254743075) - > BH> 1267650600228229401496703205376*Log[2] + > BH> 1267650600228229401496703205376*Log[4] > > BH> %//N > > BH> 6.306563320381821*^27 > > BH> NIntegrate[x^100/(x+2),{x,0,2}] > > BH> 6.306563320381638*^27 > > > BH> Bob Hanlon > > >> > >> From: "janos" <jtoth at helka.iif.hu> To: mathgroup at smc.vnet.net > >> Date: 2005/04/05 Tue AM 03:21:13 EDT > >> To: mathgroup at smc.vnet.net > >> Subject: [mg55776] [mg55743] Re: Numerical accuracy of Hypergeometric2F1 > >> > >> I wanted to calculate Integrate[x^100/(x+2),{x,0,2}] and even the sign > >> of the result is just negatvie. The reason is the same as above: Mathematica > >> calculates the integral symbolically, using a hypergeometric function, > >> then (s)he is unable to numerically evaluate it. > >> I got the good result if I used NIntegrate. > >> Janos Toth > >> Dept Math Anal > >> Budapest Univ Technol Ecol. > >> > >> > > > > > Best regards, > Janos mailto:jtoth at helka.iif.hu > Tel. (home): 36-1-242-0640 > Tel. (office): 36-1-463-2314 > or 36-1-463-2475 > Fax: 36-1-463-3172 > Homepage: www.math.bme.hu/~jtoth > >
- Follow-Ups:
- Re: Re: Re[2]: Re: Numerical accuracy of Hypergeometric2F1
- From: DrBob <drbob@bigfoot.com>
- Re: Re: Re[2]: Re: Numerical accuracy of Hypergeometric2F1