Re: NDSolve and InterpolatingFunction
- To: mathgroup at smc.vnet.net
- Subject: [mg56118] Re: NDSolve and InterpolatingFunction
- From: "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de>
- Date: Sat, 16 Apr 2005 03:51:51 -0400 (EDT)
- Organization: Uni Leipzig
- References: <d3o06i$blo$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, zz = z[t] /. sol[[1]]; FindRoot[zz == 0, {t, 0, 25}] ?? Regards Jens "Virgil Stokes" <virgil.stokes at it.uu.se> schrieb im Newsbeitrag news:d3o06i$blo$1 at smc.vnet.net... >I am solving the following system of ODE's > > g = 9.81 ; (* acceleration of gravity [m/s^2] > *) > d = 0.063; (* diameter of ball [m] *) > m = 0.05; (* mass in kg *) > \[Rho] = 1.29; (* air density, [kg/m^3] *) > \[Alpha] = \[Rho] Pi d^2/(8 m) > > h = 1; (* initial height [m] *) > v0 = 25; (* magnitude of ball velocity [m/s] > *) > \[Theta] = 15 (* initial angle of release [15 > degrees] *) > > vars = {x[t], vx[t], z[t], vz[t]} > > initc = {x[0] == 0, vx[0] == v0*Cos[\[Theta] > Degree], z[0] == h, > vz[0] == v0*Sin[\[Theta] Degree]} > > v[t] = Sqrt[vx[t]^2 + vz[t]^2]; > > eq1 = x'[t] == vx[t]; > eq2 = vx'[t] == -0.508 \[Alpha] vx[t] v[t]; > eq3 = z'[t] == vz[t]; > eq4 = vz'[t] == -g - 0.508 \[Alpha] vz[t] > v[t]; > eqns = {eq1, eq2, eq3, eq4} > > sol = NDSolve[Join[eqns, initc], vars, {t, 0, > 25}] > > which works fine; but how can I find (e.g. using > Solve) the value of t > such that z[t] is 0; i.e, where, z[t] (in the > form of an InterpolatingFunction) is zero. > > --V. Stokes >