Re: Some bugs in Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg59260] Re: Some bugs in Mathematica
- From: akhmel at hotmail.com
- Date: Wed, 3 Aug 2005 01:20:02 -0400 (EDT)
- References: <dcn6ho$kbr$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
You changed my example by adding factor x^k. Mathematica does work in this case. It does not work when this factor is absent. So, your example is useless. There is a bug and they need to correct it. Alex Bob Hanlon wrote: > Looking at the sum in more detail: > > s1[n_] := > Sum[x^k*(Gamma[n-k-1/2]*Gamma[k+1/2])/ > (Gamma[n-k-1]*Gamma[k+1]),{k,0,n-1}]; > > Calculating each term separately > > TableForm[t=Table[(Gamma[n-k-1/2]*Gamma[k+1/2])/(Gamma[n-k-1] > *Gamma[k+1]), > {n,5},{k,0,n-1}], > TableHeadings->{Automatic,Table[i,{i,0,4}]}] > > Summing each row of the table > > Tr/@t > > {0, Pi/2, Pi, (3*Pi)/2, 2*Pi} > > For example, for n=2, the term for k=0 is > > ((Gamma[n-k-1/2]*Gamma[k+1/2])/(Gamma[n-k-1]*Gamma[k+1])/. > {n->2,k->0}) == > Gamma[3/2]*Gamma[1/2]/(Gamma[1]*Gamma[1])== > (1/2)*Gamma[1/2]*Gamma[1/2]==Pi/2 > > True > > and the term for k=1 is > > ((Gamma[n-k-1/2]*Gamma[k+1/2])/(Gamma[n-k-1]*Gamma[k+1])/. > {n->2,k->1})== > Gamma[1/2]*Gamma[3/2]/(Gamma[0]*Gamma[2])==0 > > True > > Alternatively, generalizing the sum > > s1[n_,x_]= > Sum[x^k*(Gamma[n-k-1/2]*Gamma[k+1/2])/ > (Gamma[n-k-1]*Gamma[k+1]),{k,0,n-1}] > > (Sqrt[Pi]*Gamma[n - 1/2]*Hypergeometric2F1[1/2, 2 - n, 3/2 - n, x])/Gamma > [n - 1] > > Table[s1[n,x],{n,5}] > > {0, Pi/2, (1/4)*Pi*(x + 3), (3/16)*Pi*(x^2 + 2*x + 5), > (1/32)*Pi*(5*x^3 + 9*x^2 + 15*x + 35)} > > %/.x->1 > > {0, Pi/2, Pi, (3*Pi)/2, 2*Pi} > > And@@Table[(s1[n]==s1[n,x]==(n-1)*Pi/2)/.x->1,{n,25}] > > True > > > Bob Hanlon > > > > > From: "Alex Khmelnitsky" <akhmel at hotmail.com> To: mathgroup at smc.vnet.net > > Date: 2005/08/01 Mon AM 10:07:41 EDT > > To: "Bob Hanlon" <hanlonr at cox.net> > > Subject: [mg59260] Re: Some bugs in Mathematica > > > > 1) You are wrong. My sum is equal to 1 for any n and the respectable > program > > like Mathematica claims to be should know it. > > > > 2) The integral is elementary, a doesn't have to be equal to b to give a > > logarithm. > > > > 3) I had enough patience, so you better trust me. > > > > Alex > > > > ----- Original Message ----- > > From: "Bob Hanlon" <hanlonr at cox.net> To: mathgroup at smc.vnet.net > > To: <akhmel at hotmail.com>; <mathgroup at smc.vnet.net> > > Cc: <hanlonr at cox.net> > > Sent: Monday, August 01, 2005 7:08 AM > > Subject: [mg59260] Re: Some bugs in Mathematica > > > > > > > $Version > > > > > > 5.2 for Mac OS X (June 20, 2005) > > > > > > Question 1: > > > > > > s1[n_]:=Sum[(Gamma[n-k-1/2]*Gamma[k+1/2])/ > > > (Gamma[n-k-1]*Gamma[k+1]), > > > {k,0,n-1}]; > > > > > > For arbitrary n, this sum is unevaluated > > > > > > s1[n] > > > > > > Sum[(Gamma[k + 1/2]*Gamma[-k + n - 1/2])/ > > > (Gamma[k + 1]*Gamma[-k + n - 1]), > > > {k, 0, n - 1}] > > > > > > For specific nonnegative integer values of n > > > > > > Table[s1[n],{n,5}] > > > > > > {0, Pi/2, Pi, (3*Pi)/2, 2*Pi} > > > > > > For nonnegative integer values of n, this sum appears to be (n-1)*Pi/2 > > > > > > And@@Table[s1[n]==(n-1)*Pi/2,{n,25}] > > > > > > True > > > > > > Question 2: > > > > > > int1=Integrate[1/(r*Sqrt[r^2-a^2]* > > > Sqrt[r^2-b^2]),r] > > > > > > -((Sqrt[1 - a^2/r^2]*Sqrt[1 - b^2/r^2]* > > > AppellF1[1, 1/2, 1/2, 2, a^2/r^2, > > > b^2/r^2])/(2*Sqrt[r^2 - a^2]* > > > Sqrt[r^2 - b^2])) > > > > > > int2=Simplify[int1,Element[r, Reals]] > > > > > > -(AppellF1[1, 1/2, 1/2, 2, a^2/r^2, > > > b^2/r^2]/(2*r^2)) > > > > > > These simplify to a log if b equals a > > > > > > Simplify[int1/.b->a] > > > > > > Log[1 - a^2/r^2]/(2*a^2) > > > > > > int2 /. b->a > > > > > > Log[1 - a^2/r^2]/(2*a^2) > > > > > > Question 3: > > > > > > Your last integral did not return in the amount of time I was willing to > > > wait. > > > > > > > > > Bob Hanlon > > > > > > On 8/1/05 1:05 AM, "akhmel at hotmail.com" <akhmel at hotmail.com> > wrote: > > > > > > > Dear Mr. Lichtblau, > > > > > > > > I attach hereby Mathematica file with 3 examples, which you might be > > > > interested to look at. > > > > > > > > 1) Example of summation which gives an obviously wrong result, 0 > > > > instead of > > > > 1. > > > > 2) Example of indefinate integration, which gives appel function > > > > instead of > > > > elementary logarithm. > > > > 3) Definite integration which doesn't give any result at all, though > > > > again, > > > > it is nothing but elementary function. > > > > > > > > Your comments will be appreciated. > > > > > > > > Thanks, > > > > > > > > Alex > > > > > > > > > > > > Notebook[{ > > > > > > > > Cell[CellGroupData[{ > > > > Cell[BoxData[ > > > > \(Sum[\(Gamma[n - k - 1/2] Gamma[k + 1/2]\)\/\(Gamma[n - k - > 1] > > > > Gamma[k + \ > > > > 1]\), {k, 0, n - 1}]\)], "Input"], > > > > > > > > Cell[BoxData[ > > > > \(0\)], "Output"] > > > > }, Open ]], > > > > > > > > Cell[CellGroupData[{ > > > > > > > > Cell[BoxData[ > > > > \(Integrate[1\/\(r \(\@\( r\^2 - a\^2\)\) \@\(r\^2 - b\^2\)\), > > > > r]\)], "Input"], > > > > > > > > Cell[BoxData[ > > > > \(\(-\(\(\@\(1 - a\^2\/r\^2\)\ \@\(1 - b\^2\/r\^2\)\ AppellF1[1, > > > > 1\/2, > > > > 1\/2, 2, a\^2\/r\^2, > > > > b\^2\/r\^2]\)\/\(2\ \@\(\(-a\^2\) + r\^2\)\ \@\(\(-b\^2\) > > > > + \ > > > > r\^2\)\)\)\)\)], "Output"] > > > > }, Open ]], > > > > > > > > Cell[BoxData[ > > > > \(\(\(-\(\(\@\(1 - a\^2\/r\^2\)\ \@\(1 - b\^2\/r\^2\)\ AppellF1[1, > > > > 1\/2, > > > > 1\/2, 2, a\^2\/r\^2, > > > > b\^2\/r\^2]\)\/\(2\ \@\(\(-a\^2\) + r\^2\)\ \@\(\(-b\^2\) > > > > + \ > > > > r\^2\)\)\)\)\(\[IndentingNewLine]\) > > > > \)\)], "Input"], > > > > > > > > Cell[CellGroupData[{ > > > > > > > > Cell[BoxData[ > > > > \(Integrate[ > > > > 1\/\(\(r\^3\) \(\@\(r\^2 - a\^2\)\) \@\(r\^2 - b\^2\)\), {r, x, > > > > a}]\)], "Input"], > > > > > > > > Cell[BoxData[ > > > > \(Integrate::"gener" \(\(:\)\(\ \)\) > > > > "Unable to check convergence."\)], "Message"], > > > > > > > > Cell[BoxData[ > > > > \(\[Integral]\_x\%a\( > > > > 1\/\(r\^3\ \@\(\(-a\^2\) + r\^2\)\ \@\(\(-b\^2\) + > > > > r\^2\)\)\) \ > > > > \[DifferentialD]r\)], "Output"] > > > > }, Open ]] > > > > }, > > > > FrontEndVersion->"4.2 for Microsoft Windows", > > > > ScreenRectangle->{{0, 720}, {0, 407}}, > > > > WindowSize->{496, 249}, > > > > WindowMargins->{{0, Automatic}, {Automatic, 0}} > > > > ] > > > > > > > > (******************************************************************* > > > > Cached data follows. If you edit this Notebook file directly, not > > > > using Mathematica, you must remove the line containing CacheID at > > > > the top of the file. The cache data will then be recreated when > > > > you save this file from within Mathematica. > > > > *******************************************************************) > > > > > > > > (*CellTagsOutline > > > > CellTagsIndex->{} > > > > *) > > > > > > > > (*CellTagsIndex > > > > CellTagsIndex->{} > > > > *) > > > > > > > > (*NotebookFileOutline > > > > Notebook[{ > > > > > > > > Cell[CellGroupData[{ > > > > Cell[1776, 53, 127, 2, 44, "Input"], > > > > Cell[1906, 57, 35, 1, 29, "Output"] > > > > }, Open ]], > > > > > > > > Cell[CellGroupData[{ > > > > Cell[1978, 63, 103, 2, 48, "Input"], > > > > Cell[2084, 67, 228, 4, 71, "Output"] > > > > }, Open ]], > > > > Cell[2327, 74, 259, 5, 98, "Input"], > > > > > > > > Cell[CellGroupData[{ > > > > Cell[2611, 83, 126, 3, 48, "Input"], > > > > Cell[2740, 88, 107, 2, 24, "Message"], > > > > Cell[2850, 92, 148, 3, 46, "Output"] > > > > }, Open ]] > > > > } > > > > ] > > > > *) > > > > > > > > > > > > > > >
- Follow-Ups:
- Re: Re: Some bugs in Mathematica
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: Re: Some bugs in Mathematica