 
 
 
 
 
 
PlotVectorField
- To: mathgroup at smc.vnet.net
- Subject: [mg59412] PlotVectorField
- From: <topolog at gazeta.pl>
- Date: Tue, 9 Aug 2005 03:30:44 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Dear Mathematica Users!
I met a difficulty in plotting a vector field B={Bx,By,Bz}. Here how
it looks like:
1. My vector components are:
Bx = Bx(x,y,z) =         F1(z) * Exp[A + I*kx*x + I*ky*y ]
By = By(x,y,z) = Bo(z) + F2(z) * Exp[A + I*kx*x + I*ky*y ]
Bz = Bz(x,y,z) =         F3(z) * Exp[A + I*kx*x + I*ky*y ]
where F1,F2,F3,Bo are Real functions in terms od
InterpolatingFunction[z], A,kx,ky are Real parameters, x,y,z are 3D
coordinates of Real space and I denotes Imaginary unit.
2. I take 2D cuts, for example {Bx,By} and {Bx,Bz}
2a) {Bx,By} works fine:
PlotVectorField[{Re[Bx], Re[By]} /. {z -> zmax}, {x, xmin, xmax},
{y, ymin, ymax}]
It works fine because I set a concrete value of z-functions F1,F2,F3,Bo.
2b) {Bx,Bz} fails:
PlotVectorField[{Re[Bx], Re[Bz]} /. {y -> ymax}, {x, xmin, xmax},
{z, zmin, zmax}]
It fails with following error:
'Min::nord: Invalid comparison with 0.721941 +0.I attempted'
3. I have been trying following modifications:
PlotVectorField[{ComplexExpand[Re[Bx]], ComplexExpand[Re[Bz]]} /. {y
-> ymax}, {x, xmin, xmax}, {z, zmin, zmax}]
and also
PlotVectorField[{ \\
ComplexExpand[Re[Bx]/. InterpolatingFunction[s__] -> \\
(InterpolatingFunction[s][Re[#]] &)], \\
ComplexExpand[Re[Bz]/. InterpolatingFunction[s__] -> \\
(InterpolatingFunction[s][Re[#]] &)]} \\
/. {y -> ymax}, {x, xmin, xmax}, {z, zmin, zmax}]
(here \\ denotes continuation of line)
Unfortunately no of that tricks helps.
It is very important to me and urgent, so I would appreciate any help. 
Thanks in advance and best regards
Rafal Kosinski
-- 
Tylko w sierpniu Avanti tak¿e w wersji MINI - z ³atwo¶ci± zmie¶ci siê w torebce!
http://www.avantimoda.pl

