Re: Equality question?
- To: mathgroup at smc.vnet.net
- Subject: [mg59472] Re: Equality question?
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Wed, 10 Aug 2005 02:57:39 -0400 (EDT)
- Organization: The Open University, Milton Keynes, U.K.
- References: <dd9mq3$is1$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
ab at sd.com wrote: > EQ1 = ((v*a*(x^2 - a^2))/(4*Pi))*Integrate[1, {\[Phi]p, 0, 2*Pi}]* > Integrate[(-Sin[\[Theta]p])*((a^2 + x^2 - 2*a*x*Cos[\[Theta]p])^(-3/2) - > (a^2 + x^2 + 2*a*x*Cos[\[Theta]p])^(-3/2)), {\[Theta]p, Pi/2, 0}] > > EQ2 = v*(1 - (z^2 - a^2)/(z*Sqrt[z^2 + a^2])) > > Is EQ1 equal to EQ2 ? or not? > Not in the general case, but sometimes. For instance: In[1]:= EQ1Bis = Simplify[Assuming[{v \[Element] Reals, a > 0, x > a}, ((v*a*(x^2 - a^2))/(4*Pi))* Integrate[1, {\[Phi]p, 0, 2*Pi}]*Integrate[(-Sin[\[Theta]p])* ((a^2 + x^2 - 2*a*x*Cos[\[Theta]p])^(-3/2) - (a^2 + x^2 + 2*a*x*Cos[\[Theta]p])^(-3/2)), {\[Theta]p, Pi/2, 0}]]] Out[1]= (v*(a^2 + x*(-x + Sqrt[a^2 + x^2])))/(x*Sqrt[a^2 + x^2]) In[2]:= EQ2Bis = v*(1 - (z^2 - a^2)/(z*Sqrt[z^2 + a^2])) /. z -> x Out[2]= v*(1 - (-a^2 + x^2)/(x*Sqrt[a^2 + x^2])) In[3]:= ComplexExpand[EQ1Bis - EQ2Bis] Out[3]= 0 In[4]:= $Version Out[4]= "5.2 for Microsoft Windows (June 20, 2005)" Regards, /J.M.