Re: Re: Simplification to Partial Fractions
- To: mathgroup at smc.vnet.net
- Subject: [mg59742] Re: [mg59699] Re: [mg59676] Simplification to Partial Fractions
- From: stephen layland <layland at wolfram.com>
- Date: Fri, 19 Aug 2005 04:32:20 -0400 (EDT)
- References: <200508180416.AAA08527@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
and thus spake Jon Palmer [2005.08.18 @ 00:21]: > At first glance I can't make PolynomialReduce do what I need. > > Here is an example problem. Take the expression: > > u1 = A + (B*(x^2 - y^2)^2)/(x^2 + y^2) + (C*(y^2 - z^2)^2)/(y^2 + z^2) > + (D*(-x^2 + z^2)^2)/(x^2 + z^2) > > Now > > u2 = Factor[u1] > > > > How do you Simplify u2 back to the form of u1? Here's a hacky way to do it: close = Collect[Simplify[Apart[u2]], {(x^2 + y^2)}] Simplify[close /. A + (B*(x^2 - y^2)^2)/(x^2 + y^2) -> q] /. q -> A + (B*(x^2 - y^2)^2)/(x^2 + y^2) -- /*------------------------------*\ | stephen layland | | Documentation Programmer | | http://members.wri.com/layland | \*------------------------------*/
- References:
- Re: Simplification to Partial Fractions
- From: "Jon Palmer" <jonathan.palmer@new.oxford.ac.uk>
- Re: Simplification to Partial Fractions