Re: Re: Simplification to Partial Fractions
- To: mathgroup at smc.vnet.net
- Subject: [mg59742] Re: [mg59699] Re: [mg59676] Simplification to Partial Fractions
- From: stephen layland <layland at wolfram.com>
- Date: Fri, 19 Aug 2005 04:32:20 -0400 (EDT)
- References: <200508180416.AAA08527@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
and thus spake Jon Palmer [2005.08.18 @ 00:21]:
> At first glance I can't make PolynomialReduce do what I need.
>
> Here is an example problem. Take the expression:
>
> u1 = A + (B*(x^2 - y^2)^2)/(x^2 + y^2) + (C*(y^2 - z^2)^2)/(y^2 + z^2)
> + (D*(-x^2 + z^2)^2)/(x^2 + z^2)
>
> Now
>
> u2 = Factor[u1]
>
>
>
> How do you Simplify u2 back to the form of u1?
Here's a hacky way to do it:
close = Collect[Simplify[Apart[u2]], {(x^2 + y^2)}]
Simplify[close /. A + (B*(x^2 - y^2)^2)/(x^2 + y^2) -> q] /.
q -> A + (B*(x^2 - y^2)^2)/(x^2 + y^2)
--
/*------------------------------*\
| stephen layland |
| Documentation Programmer |
| http://members.wri.com/layland |
\*------------------------------*/
- References:
- Re: Simplification to Partial Fractions
- From: "Jon Palmer" <jonathan.palmer@new.oxford.ac.uk>
- Re: Simplification to Partial Fractions