MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Matrix differential equation in NDSolve


Hello,

I would like to evaluate a matrix equation of the form:

S'[t]==A(x).S[t]+B(x)
x'[t]==f[x]

in NDSolve where A and B are symbolic matrices. The problem is that S[t] is an unknown n x m matrix, of the same dimension as B. If I enter the first equation as shown above, Mathematica evaluates it to

{A(x).S[t]+B(x){1,:},A(x).S[t]+B(x){2,:},...,A(x).S[t]+B(x){m,:}}

that is, it assumes S[t] is a vector which is replicated to match the dimensions of B(x). How can I get Mathematica to respect the fact that S[t] is of dimension B in NDSolve. I tried holdform but this does not evaluate in NDSolve


  • Prev by Date: Matrices with Mathematica 5.1
  • Next by Date: RE: Re: NDSolve
  • Previous by thread: Re: Matrices with Mathematica 5.1
  • Next by thread: Adding matrices for use in NDSolve input