Re: "teach" mathematica an integral
- To: mathgroup at smc.vnet.net
- Subject: [mg54382] Re: "teach" mathematica an integral
- From: "Scout" <user at domain.com>
- Date: Sat, 19 Feb 2005 02:32:55 -0500 (EST)
- References: <curp29$qvk$1@smc.vnet.net> <cv08ns$j7e$1@smc.vnet.net> <cv2dgp$2dp$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
> LaplaceTransform[Erf[(a - 2*b*x)/(2*Sqrt[c*x])], x, s] Have you tried with this Laplace property? L[f '(t)] = s * L[f(t)] - f(0) In[1]:= \!\(D[Erf[\(a - 2\ b\ x\)\/\(2\ \@\(c\ x\)\)], x]\) Out[1]= \!\(\(2\ \[ExponentialE]\^\(-\(\((a - 2\ b\ x)\)\^2\/\(4\ c\ x\)\)\)\ \ \((\(-\(b\/\@\(c\ x\)\)\) - \(c\ \((a - 2\ b\ x)\)\)\/\(4\ \((c\ \ x)\)\^\(3/2\)\))\)\)\/\@\[Pi]\) In[2]:= LaplaceTransform[%1, x, s] Out[2]= \!\(\(2\ \((\(-\(\(a\ \[ExponentialE]\^\(\(a\ b\)\/c - \@\(a\^2\/c\)\ \ \@\(b\^2\/c + s\)\)\ \@\[Pi]\)\/\(2\ \@\(a\^2\/c\)\ \@c\)\)\) - \(b\ \ \[ExponentialE]\^\(\(a\ b\)\/c - \@\(a\^2\/c\)\ \@\(b\^2\/c + s\)\)\ \ \@\[Pi]\)\/\(2\ \@c\ \@\(b\^2\/c + s\)\))\)\)\/\@\[Pi]\) In[3]:= Simplify[(%2 + Erf[0])/s] Out[3]= \!\(\(-\(\(\[ExponentialE]\^\(\(a\ b\)\/c - \@\(a\^2\/c\)\ \@\(b\^2\/c + \ s\)\)\ \((b\ \@\(a\^2\/c\) + a\ \@\(b\^2\/c + s\))\)\)\/\(\@\(a\^2\/c\)\ \@c\ s\ \@\(b\^2\/c \ + s\)\)\)\)\) Does It help you? ~Scout~ "julia" <dbug at hotmail.de> ha scritto nel messaggio news:cv2dgp$2dp$1 at smc.vnet.net... > Hi, > > The term of a model, i need to transform is > (0.25*a^2*Erf[(a - 2*b*x)/(2*(c*x)^0.5)])/(b^2*x^3) > > (a,b,c are parameters) > > The transformation, which mathematica didn't do was > > LaplaceTransform[Erf[(a - 2*b*x)/(2*Sqrt[c*x])], x, s] > > I performed the transformation by partial integration. This leads to > > ((-b)*E^((a*(b - a*Sqrt[c/a^2]*Sqrt[b^2/c + s]))/c) + (Sqrt[c] - > a*Sqrt[c/a^2]*E^((a*(b - a*Sqrt[c/a^2]*Sqrt[b^2/c + s]))/c))* > Sqrt[b^2/c + s])/(Sqrt[c]*s*Sqrt[b^2/c + s]) > > now i want to transform the first term. The Problem is that the > Erf-Expression is part of a product... > > >