Re: Function Fitting To 3D Data
- To: mathgroup at smc.vnet.net
- Subject: [mg53663] Re: Function Fitting To 3D Data
- From: "Astanoff" <astanoff at yahoo.fr>
- Date: Sat, 22 Jan 2005 03:51:43 -0500 (EST)
- References: <csl1jv$6ue$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Assuming a linear fitting, this is the way I would do it : In[1]:= data={{3,2,13.9},{3,5,13.4},{3,10,12.3},{12,1,15.6}, {24,2,16.0},{60,5,14.1},{120,10,13.0},{240,20,11.7}}; ff[x_,y_]=Fit[data,{1,x,y},{x,y}]; alldata= Flatten[Table[If[MemberQ[data[[All,{1,2}]],{x,y}], First@Cases[data,{x,y,_}],{x,y,ff[x,y]}], {x,1,240}, {y,1,20}],1]; f=Interpolation[alldata] Out[4]= InterpolatingFunction[{{1.,240.},{1.,20.}},<>] In[5]:=f[1,1] Out[5]=15.0536 In[6]:=f[3,2] Out[6]=13.9 In[7]:=f[3,4] Out[7]=14.0519 In[8]:=f[3,5] Out[8]=13.4 In[9]:=f[240,20] Out[9]=11.7 hth Valeri
- Follow-Ups:
- Re: Re: Function Fitting To 3D Data
- From: DrBob <drbob@bigfoot.com>
- Re: Re: Function Fitting To 3D Data