Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2005
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Explicit solution to Root[]

  • To: mathgroup at smc.vnet.net
  • Subject: [mg58425] Re: [mg58407] Explicit solution to Root[]
  • From: Bob Hanlon <hanlonr at cox.net>
  • Date: Sat, 2 Jul 2005 04:06:23 -0400 (EDT)
  • Reply-to: hanlonr at cox.net
  • Sender: owner-wri-mathgroup at wolfram.com

$Version

5.1 for Mac OS X (January 27, 2005)

N[Root[-2*#1^3 + 2*#1^4 - #1*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 
108*#1^4 + 216*#1^5 & , 1] - 
     6*#1^2*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & 
, 1] + 
     6*#1^3*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & 
, 1] - 
     5*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 1]
^2 - 
     6*#1*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 
1]^2 + 
     6*#1^2*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & 
, 1]^2 - 
     2*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 1]
^3 + 
     2*#1*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 
1]^3 & , 2]]

1.11221


Bob Hanlon

> 
> From: "Mukhtar Bekkali" <mbekkali at gmail.com>
To: mathgroup at smc.vnet.net
> Date: 2005/07/01 Fri AM 02:01:59 EDT
> Subject: [mg58425] [mg58407] Explicit solution to Root[]
> 
> Here is the code:
> 
> \!\(\(Root[\(-2\)\ #1\^3 + 2\ #1\^4 - #1\ Root[\(-4\) - 3\ #1 + 66\
> #1\^2 +
>           80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, 1] - 6\ #1\^2\
> Root[\(-4\) - \
> 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &,
>                    1] + 6\ #1\^3\ Root[\(-4\) - 3\ #1 +
>           66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, 1] - 5\ \
> Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5
> &, \
> 1]\^2 - 6\ #1\ Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1
\^4
> +
>               216\ #1\^5 &, 1]\^2 + 6\ #1\^2\ Root[\(-4\) - 3\ #1 +
>                   66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &,
>                    1]\^2 - 2\ Root[\(-4\) -
>                 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5
> &, 1]\
> \^3 + 2\ #1\ Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 
+
> 216\ \
> #1\^5 &, 1]\^3 &, 2];\)\)
> 
> I would guess it is a number.  I applied RootReduce, ToRadicals, N or
> combinations of thereof, however, nothing seem to convert the above
> expression into an explicit number. What command or sequence of
> commands would do the job? Please advise. Thanks, 
> 
> Mukhtar Bekkali
> 
> 


  • Prev by Date: Re: Explicit solution to Root[]
  • Next by Date: Re: Explicit solution to Root[]
  • Previous by thread: Re: Explicit solution to Root[]
  • Next by thread: Re: Explicit solution to Root[]