Re: Explicit solution to Root[]
- To: mathgroup at smc.vnet.net
- Subject: [mg58425] Re: [mg58407] Explicit solution to Root[]
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 2 Jul 2005 04:06:23 -0400 (EDT)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
$Version 5.1 for Mac OS X (January 27, 2005) N[Root[-2*#1^3 + 2*#1^4 - #1*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 1] - 6*#1^2*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 1] + 6*#1^3*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 1] - 5*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 1] ^2 - 6*#1*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 1]^2 + 6*#1^2*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 1]^2 - 2*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 1] ^3 + 2*#1*Root[-4 - 3*#1 + 66*#1^2 + 80*#1^3 - 108*#1^4 + 216*#1^5 & , 1]^3 & , 2]] 1.11221 Bob Hanlon > > From: "Mukhtar Bekkali" <mbekkali at gmail.com> To: mathgroup at smc.vnet.net > Date: 2005/07/01 Fri AM 02:01:59 EDT > Subject: [mg58425] [mg58407] Explicit solution to Root[] > > Here is the code: > > \!\(\(Root[\(-2\)\ #1\^3 + 2\ #1\^4 - #1\ Root[\(-4\) - 3\ #1 + 66\ > #1\^2 + > 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, 1] - 6\ #1\^2\ > Root[\(-4\) - \ > 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, > 1] + 6\ #1\^3\ Root[\(-4\) - 3\ #1 + > 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, 1] - 5\ \ > Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 > &, \ > 1]\^2 - 6\ #1\ Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1 \^4 > + > 216\ #1\^5 &, 1]\^2 + 6\ #1\^2\ Root[\(-4\) - 3\ #1 + > 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 &, > 1]\^2 - 2\ Root[\(-4\) - > 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + 216\ #1\^5 > &, 1]\ > \^3 + 2\ #1\ Root[\(-4\) - 3\ #1 + 66\ #1\^2 + 80\ #1\^3 - 108\ #1\^4 + > 216\ \ > #1\^5 &, 1]\^3 &, 2];\)\) > > I would guess it is a number. I applied RootReduce, ToRadicals, N or > combinations of thereof, however, nothing seem to convert the above > expression into an explicit number. What command or sequence of > commands would do the job? Please advise. Thanks, > > Mukhtar Bekkali > >