Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2005
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Getting crude approximation to a function

  • To: mathgroup at smc.vnet.net
  • Subject: [mg58849] Re: [mg58832] Getting crude approximation to a function
  • From: yehuda ben-shimol <bsyehuda at gmail.com>
  • Date: Thu, 21 Jul 2005 03:07:55 -0400 (EDT)
  • References: <200507200429.AAA28544@smc.vnet.net>
  • Reply-to: yehuda ben-shimol <bsyehuda at gmail.com>
  • Sender: owner-wri-mathgroup at wolfram.com

Hi Mukhtar,
If you use rational and integers only for the coefficients you will
not need Chop and Rationalize. It will return an expression with
rationals and integers only
yehuda

On 7/20/05, Mukhtar Bekkali <mbekkali at gmail.com> wrote:
> Assume I have a function f[x], x is some variable, given below (my real
> function is much more complex). I would like to obtain its crude
> approximation. I used command Series, first order expansion. The
> resulting function has coefficients that have high precision. I do not
> need that since my expansion is very crude anyway. I need coefficients
> that are rational number approximations to these coefficients. How do I
> obtain this? It seems to me that command Chop takes care of
> coefficients that are not product with variable x but cannot handle
> coefficients that are not standalone. For instance, in this example
> 
> \!\(\(\(Normal[
>         Series[0.71  p\
>             x + \(1\/3\)
>             x\^2 - 4, {x, 1, 1}]] // Expand\) // Chop\) //
> Rationalize\)
> 
> I would like to obtain output of the form (-13/10)+(29/10)x.
> Mathematica gives me (-13/10)+2.8972x instead, where it keeps
> 2.8971974507154195` in the memory. I need this because I use
> InequalitySolve package and it refuses to function unless all numbers
> are rational.
> 
> Mukhtar Bekkali
> 
>


  • Prev by Date: Gridlines in MultipleListPlot
  • Next by Date: Mathematica 5.2: The 64-bit and multicore release
  • Previous by thread: Getting crude approximation to a function
  • Next by thread: Re: Getting crude approximation to a function