Re: NIntegrate::inum continued
- To: mathgroup at smc.vnet.net
- Subject: [mg59131] Re: NIntegrate::inum continued
- From: Peter Pein <petsie at dordos.net>
- Date: Sat, 30 Jul 2005 01:25:04 -0400 (EDT)
- References: <dcccp4$3gd$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
wtplasar at lg.ehu.es schrieb: > Hi, > > I have these code which is a modification on a code which was improved = > by one of the mathgroup members (see the original message below). When = > I evaluate it a get a Recursion Limit problem. Can you help me? > > > In[1]:= > datanw={{0.04`,36.38`,0.19`},{0.05`,36.84`,0.21`}, > {0.0307`,35.9`,0.2`}}; > > In[2]:= > ndat=3; > > In[3]:= > Nn = ndat; > > In[4]:= > z =datanw[[#1,1]] & ; mi = datanw[[#1,2]] & ; > smi =datanw[[#1,3]] & ; SetAttributes[smi, Listable]; f[ > x_, om_, w_] := 1/Sqrt[om*(1 + x)^3 + ( > 1 - om)*(1 + x)^(3*(1 + w))]; rr[1, om_, w_] := rr[1, om, w] = > NIntegrate[f[x, om, w], {x, 0, 1}]; > rr[zz_, om_, w_] := rr[zz, om, w] = NIntegrate[f[x, > om, w], {x, zz - > 1, zz}] + rr[zz - 1, om, w]; ff[zz_, om_, w_] := > 5*Log[ > 10, rr[zz, om, > w]*(1 + zz)]; ci = Sum[1/smi[ > i]^2, {i, 1, Nn}]; chi2f2[(om_)? > NumericQ, (w_)?NumericQ] := Module[{vec = ((mi[#1] - ff[z= > [#1], om, > w])/smi[#1] & ) /@ > Range[Nn]}, vec . vec - Total[vec/smi[Range[Nn]]]^2/ci]; > > > > ---------- Mensaje reenviado ---------- > Para: mathgroup at smc.vnet.net > Asunto: NIntegrate::inum > De: <wtplasar at lg.ehu.es> > Fecha: Thu, 28 Jul 2005 02:35:51 +0200 (CEST) > > Hi, > > I have to minimize a function which is defined through a numerical > integral. I get the "NIntegrate::inum .." error message. I know I can > switch it off, but I wonder if there is a more elegant way to deal > with the problem. > > These my input and output lines: > In[1]:= > Do[z[i] = i, {i, 1, 50}] > Do[mi[i] = i^2, {i, 1, 50}] > Do[smi[i] = i^3, {i, 1, 50}] > > In[4]:= > f[x_, om_, w_] := 1/Sqrt[om (1 + x)^3 + (1 - om)(1 + x)^(3*(1 + w))];= > rr[zz_?NumberQ, om_, w_] := NIntegrate[f[x, om, w], {x, 0, zz}]; > ff[zz_?NumberQ, om_, w_] := 5*Log[10, rr[zz, om, w]*(1 + zz)]; > Nn = 50; > > In[8]:= > ci = Sum[1/smi[i]^2, {i, 1, 50}]; > > In[9]:= > chi2f2[om_, w_] := Sum[(mi[i] - ff[z[i], om, w])^2/smi[i]^2, {i, 1, > Nn}] - > (Sum[(mi[i] - ff[z[i], om, w])/smi[i]^2, {i, 1, Nn}])^2/ci > > In[10]:= > Timing[NMinimize[{chi2f2[om, w], 0 =A1=DC om =A1=DC 1}, {om, w}]] > > NIntegrate::inum: Integrand ..... is not numerical at {x} = {0.5} > > Out[10]= > {38.966 Second, {0.26337, {om -> 0.999998, w -> 0.0738109}}} > > > Thanks in advance, > > Ruth Lazkoz > In this case, there are other first arguments for rr possible than positive Integers. Replace the two definitions for rr by rr[zz_?NumericQ,om_?NumericQ,w_?NumericQ]:=NIntegrate[f[x,om,w],{x,0,zz= }]; and chi2f2[(om_)?NumericQ, (w_)?NumericQ]:=... by chi2f2[om_,w_]:=...= =2E Good luck, Peter -- Peter Pein Berlin http://people.freenet.de/Peter_Berlin/