Re: locating points in mathematica plots

• To: mathgroup at smc.vnet.net
• Subject: [mg57637] Re: locating points in mathematica plots
• From: Jean-Marc Gulliet <jeanmarc.gulliet at 9online.fr>
• Date: Thu, 2 Jun 2005 05:18:02 -0400 (EDT)
• Organization: New York University
• References: <d7k39c\$oiq\$1@smc.vnet.net>
• Sender: owner-wri-mathgroup at wolfram.com

```utish_r at hotmail.com wrote:
> how to locate points (coordinate), say maxima and minima values, in a
> 3d plot in mathematica?
>
Not whether this is what you are looking for.

Assuming that you use some experimental data where only "z" is provided

In[100]:=
data = Table[Sin[x*y] + Random[Real, {-0.15, 0.15}],
{x, 0, (3*Pi)/2, Pi/15}, {y, 0, (3*Pi)/2, Pi/15}];

In[101]:=
p2 = ListPlot3D[data];

The internal structure of the expression is of the form

In[102]:=
Shallow[FullForm[p2], {6, 2}]

SurfaceGraphics[List[List[-0.0531853132797791`, 0.07470139085368`,
Skeleton[21]], List[-0.04314815332538362`, -0.004767344336139311`,
Skeleton[21]], Skeleton[21]],
List[Rule[
PlotRange, Automatic], RuleDelayed[DisplayFunction,
\$DisplayFunction], Skeleton[37]]]

So we can find, say, the maximum using

In[103]:=
Max[p2[[1]]]

Out[103]=
1.12698

and the corresponding coordinates by

In[104]:=
Position[p2[[1]], Max[p2[[1]]]]

Out[104]=
{{23,9}}

Hope this helps,
/J.M.

```

• Prev by Date: Re: Partition Function
• Next by Date: Re: FourierTransform
• Previous by thread: Re: locating points in mathematica plots
• Next by thread: label origin on plot