MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: General 3-state stochastic matrix (again)

  • To: mathgroup at smc.vnet.net
  • Subject: [mg58266] Re: General 3-state stochastic matrix (again)
  • From: Virgil Stokes <virgil.stokes at neuro.ki.se>
  • Date: Sat, 25 Jun 2005 01:56:24 -0400 (EDT)
  • References: <200506230929.FAA16127@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
  <meta content="text/html;charset=ISO-8859-1" http-equiv="Content-Type">
  <title></title>
</head>
<body bgcolor="#ffffff" text="#000000">
Steven M. Christensen wrote:
<blockquote cite="mid200506230929.FAA16127 at smc.vnet.net" type="cite">
  <pre wrap=""> Your email has come to me with a lot of non-ascii symbols.  

Please resend this in pure ascii so we can understand what it
is.

Moderator




I have tried to find the limit (as n, the power of the matrix, goes to
infinity) for the general 3-state stochastic matrix using the following
code:



Clear[\116\0612, \116\0613, \116\0621, \116\0623, \116\0631, \116\0632]
T = {{1 - \116\0612 - \116\0613, \116\0612, \116\0613}, {\116\0621, 1 - \116\0621 - \116\0623, \116\0623}, {\116\0631, \116\0632, 1 - \116\0631 - \116\0632}};
MatrixForm[T]
xx = MatrixPower[T, n];

MatrixForm[%]
TimeUsed[]
zz = Limit[xx, n -&gt; \142\010\036, Assumptions -&gt; 0 &lt; \116\0612 &lt; 1 &amp;&amp;
0 &lt; \116\0613 &lt;  1 &amp;&amp; 0 &lt; \116\0612 + \116\0613 &lt; 1 &amp;&amp; 0 &lt; \116\0621 &lt; 1 &amp;&amp;
       0 &lt; \116\0623 &lt; 1 &amp;&amp; 0 &lt; \116\0621 + \116\0623 &lt;  1 &amp;&amp; 0 &lt; \116\0631 &lt; 1
&amp;&amp; 0 &lt; \116\0632 &lt; 1 &amp;&amp; 0 &lt;
\116\0631 + \116\0632 &lt; 1] // FullSimplify;
TimeUsed[]
MatrixForm[zz]

However, it does not find a symbolic solution. I would appreciate it
greatly if someone else could look at this and see if they are able to
get a symbolic solution. Warning! this can take considerable CPU time.

Note, for a general 2-state stochastic matrix, the above approach works
fine.

--Thanks,
V. Stokes






  </pre>
</blockquote>
You might try this (an extension to your notebook):<br>
<br>
<img src="cid:part1.09070602.08010506 at neuro.ki.se" alt=""><br>
<br>
--V. Stokes<br>
</body>
</html>

--------------050008020208030801080109
Content-ID: <part1.09070602.08010506 at neuro.ki.se>
 filename="moz-screenshot.jpg"

/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRof
Hh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwh
MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAAR
CAAaAjIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAA
AgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkK
FhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWG
h4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl
5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREA
AgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYk
NOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOE
hYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk
5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2vW9fsfD6WLXzSZvr2Gxt1RdxaWRsAegA
GSSewOMnAOpXmfxH8Nar4uOq2iaZqXkW+mGOwktprZVu5nkR2R/MYsEDRQNkBD8koycqDhnw
14y1bxjN4jvdEnt5m0p45Fa9hV47gWxjX7HIjsYdzySfK+UH3ySxUIAe0UV4npvw41yx8HaE
X0e0bUdJ8RxagI4hFHcS2qbUOfnMSysERiA4UhASxfJOJF8NfEd14e8Oadc+E9t1pmn6rDcT
zS2rLI8qSNbBSJCTtduMgbWbI7mgD3fW9V/sTR59R+wX1/5O3/RrCHzZnywX5VyM4zk+wNaF
fP8AqHgPxfP4Z8RaTJ4enu5tSi0ye2kNzblIruOJBdStukBEjneC4BL85ODmtC78HeI28d3n
inTvC09nu1vT7uNEntUnMCxSi6AKy7RvYjI3fPu574AO4+L9/eaZ8LdZvLC7ntLqPyNk0Ehj
dczxg4YcjIJH41Y8QePdC8FXUGlXovpPJtEuJpFBl+z25lWFZJGdtz5dgPl3vwSR6/PGrW+l
r4O1DVL3Tdcjvry0jSxutQ0zbHK73Indjc5PnTFCwEm2PKIeOQK9b+KHgTX/ABJ4huJ9KtY5
4NQ0eLTfMMyoLd1vI5i8gYg7NoP3AxyOnTIB65RWfrOn3Gp6c9ta6jPYSHP7yED5hgja38QU
55KMj8fK6nmqeh2E2h6NcxnTLRZ0dpCLByWvWCj94xkwRK5HO937Zkbk0AblFeR6/pLaJoPi
C/k0SPS4EspLvTrpL9YRpTmNkWCFUPySvIsbN5eFczOpZ9i+Z3Hg27bWfhzok66jJJPPpkSv
eI6yOJfLCu2WDAuGBzuB5ByOooA6SsOPxRbP41m8KtaXcd4ll9uWZgnlSRbgmVIYtncSMFR9
09sE19D0C50rWbm5ultL55UbbqkjP9r2lgfJKtuATgt8jIm4/LEvWsv+zNW/4XX/AG3/AGVP
/ZP9if2f9r82Lb5nm+bnbv37cfLnbnd2x81AHYXt9b6fAs11J5cbSxwg7ScvI6xoOPVmUe2e
eKw/FnjXTfCAtVvILu5nuUnkjgtUUt5cMZklclmVcKo6ZycjAPNU/FXhaXxlrEGnalFt8PW9
pLIWV0Ly3UitEuFZDt8pC7Bsj5nQ4O01yfjDwx4w17SPDt3Pp8d1qllZalYXscFxGDI80DQp
OpbYuxiocjgqHA2nBwAeqWF9b6np1tf2cnmWt1Ek0L7SNyMAVODyMgjrVisPSNFu7HwVpeiN
fyWt3a2UFu9zaBGIZFUEr5iEEHaRyvQ9j0j8MaJPov2pLm3sWmk2btQheVprvGceb5pdxsB2
rmWTjptGFoA6CivO59IkGsy6tP4ej0+wuEMzNNcwIumTRtue9kT54jOwZsOA5HkoGYCRtmh8
ML5tT8JyXv8Aasl9BPezyW0c06zS2kDNmOGRw7lnClWO47hvCn7tAHaVh+IfFFt4buNIiu7S
7lTVL1LGKWEIVjlc/KHywODycgH7p9s07rw3eP4hg1GWSDV7dZVZbfUWK/Yzv3CSEIDGWQcL
ujEnJzNjis/4j6Zq2qf8Iz/ZWlT332DW4NQuPKliTbHFnI/eOuWO7gDjg5I4yAdhf31vpmnX
N/eSeXa2sTzTPtJ2ooJY4HJwAelU/Eev2Phbw/ea1qTSC0tUDP5a7mYkhVUD1LEDnA55IHNZ
/irR7vxDcaVpTQRtopuPtOps7IfMWIho4djKdweTaT0+WNhn5hXL614P1+/+D+r+D0SOW4tX
WDTZZJl/0m2jkSSLJCqFcIPL5ABZMk4OaAO08O+JLPxLZ3U9rHPDJaXctlcwTqA8M0ZwykqS
p6g5Ukc9c5A2K4/4e6JqOj2evT6lb/ZpNU1u61COBnVnjjkIChypK7vlzhSRyOc5AsWPhu8s
vEcd/dSQawvOy8vmK3Np8hB8tQDF8+cHy1h4A3eYeaAOoori/FWlT6nqkV1D4bkuRZui3DrN
FE+pQNkG3B3gtEpdpGSUqrGJVwwcsuP4N1Kab4l6pp1reSNpttpiJJaW7mW2trhJnjMYJVBA
UClERUAkRBITnqAemVn65qyaDod7q0ttPcQ2cTTSRwbd+xeWI3Mo4GT17cZOBWP4h8N3mp3g
uRJBqdqOuj6kxS2bgDqgwcEb/wB6k3IG3y+tXPGVtd33grW7KwtZLq7urKW3ihRkUlnUoDly
AAN2Tz0Bxk4BANDSdSh1nRrHVLdZFgvbeO4jWQAMFdQwBwSM4Pqaz/EPii28N3GkRXdpdypq
l6ljFLCEKxyuflD5YHB5OQD90+2cfwbf6nYponha+0WS2NpoUTzztcRuY5UYReWVQsAGCl1Y
t8wDADKtiP4j6Zq2qf8ACM/2VpU999g1uDULjypYk2xxZyP3jrlju4A44OSOMgHUaVqv9qfb
f9AvrP7LdyWv+lw+X523H7yPk7oznhu+DWhXg8Pw/wBXuPs9lL4M8m1HjA6qDK1oY4rBtoaL
ashPRVygBUhR1wK2Phl4U8VeGtf0ybVNOnjt5dEa0vXW5icCdLiQxGQB8tth2IpAbaCF4AOA
DvPF/jXTfBFvY3erwXf2O6uBbm5hRWWFiMguNwbGAx+UN9098Ax6n46sNM8c6b4Rayvp9S1C
ITRtCsflqmXyWLODwI2JwDwOMniqfxE8Pz+KLTS9KTT5Li3kuJTPOBEy2oa3liWQq7qWKvKr
gLk/Iehxng9J8GeKrS58HXFxoE5uLSK6XUPLv4okjL2yWkIV1cuv7uCN2ZQxG4lcn5AAe0X9
9b6Zp1zf3knl2trE80z7SdqKCWOBycAHpRf3X2HTrm8+zz3HkRPL5Num+STaCdqL3Y4wB3Ne
CD4eeKZfB3irR/8AhGZIftiWFxp1u09t5UE8e1Z9mJDtJUsA5yzIvzsWPzac/wAPHvL7xrdf
8IB5CXlpH/YkWbRfImELRNwsu1fmk3+nybvvhRQB7RYXX27Tra8+zz2/nxJL5NwmySPcAdrr
2YZwR2NcfY/FDTLu8jgm0nVbKNtVOjGedYSiXgBPlkJIzc9NwBXnrjmuHbwVrfn+GNRi8F5m
0+0tdP1i2uJbZ11OEJtclfN2HyjGhQvyzMmQBEK1NE8AX19ZeLZdS0u7sNUudTu9Q0eS4vsx
RPKhEUmyKRlWVCSd+3IypUnHAB65RXgdj8NPElroNxqEOixw6pp9xpd1pNg80OGnhjRLl22t
tCSEbjh1ZzGpbGBmwfhXrEPh02sVlITYawlvEgkgaW60lJ5JR9/92zs824pJtQ+SmVyoyAe6
Vxdp8S9Ku/Cdh4hSw1JYNRvVsbC3ZI/NuZWYqAuH2qMq/Lsv3D6jPH3Xw5kn1TwTaXHhu7v9
JsLe6t76W7uoJJVhl3LCjMGUkxZ3YQEJnCM5GTX8D6dD4k+B/hzTf7HtNdto72YX9s1wI5IV
DTOCjBgVlyYwBkZEmCVViwAPULHxVY3dvdzTQ3dl9kvYrCaO6iwwnkEW1QFzkbpkXcPlPJBK
4Y7leL3vgnxPfeF9GTVtPn1qaw8S/ao4b6aCW7XTcnMckjMEdmIBKhiDlR0XC49t8NPHKaHr
tqg+z3c+lNazy/bAP7UuPtrymTKklswkpul2n59p+XJAB7Jf+KLbTfFmkeHp7S78/VUla2uF
CGLMalnVvm3AgY/hx8w5643K8b8Y+BNQ1gaHaaV4Ujt7CzstVc25nhaOGa4jcwqAW4cSbWO0
FELAKxC5FO58MeMpNY8MawfD98dQsP7PN3crqMMk0yxK6XCMXl+XdwQsZ2uJGaQliAgB7Rf3
1vpmnXN/eSeXa2sTzTPtJ2ooJY4HJwAelV7TVftesajp32C+h+w+V/pM0O2G43ru/dNn5tvR
umDXia/DTxJP8PPFdnPoscmpXtxbS2P2qaF7tmEheQyShtjEebKokJDsC2QBtQWLnwNrsviD
Vp7DwjJY6Hc6npl42nCS1RbiC3BWWExpIUJZnDhWIU7SSQ2AQD1CTxrpsHjyHwfcwXcOoXFv
9otpGRTFOoBJClWJB+V/vBfuH1XMfh3x1YeJ/EOtaNY2V8kmjytDdTzLGI94dlAXDljnYxHy
9Bzg4B4PxZ4K1y5vbS70Pw7HHd6Hb6Y2m7popYpGt3kLwLI0iyBMTIdzBd3knODtJrnwLrFr
f+IbOLw1d3ekzPpcVq817AGkhtUETPs37JHx86pKBGcZYZARgD2S4vre0ntIZ5Nkl3KYYBtJ
3uEaQjjp8qMefT1xVfVdV/sv7F/oF9efaruO1/0SHzPJ3Z/eScjbGMct2yK8b0vwNrq2/gSX
XfCMmpPoyXttqMUslrM0kTD/AEcDfJhkXeQAT8u04A4zX0v4c6rpnhjwi6+DZB4g0/WIrjUJ
45rbc9vFI8gAYygEkSgdifLw2AqZAPZPFPiSz8I+HLvXL+OeS1tdm9IFBc7nVBgEgdWHeqd7
4yttMv8ATbXUNN1K1S/uIrNbiSNPLjuJELLEcOSx7bkDICcbuGx4h478KahomheJr7/hFY7P
Q75I7i3jZ4XbSrj7SiEJiQ7RLGoZvLBA3In3UJr1fxHpN34o8T+Fb6wt5Eg0+9W8i1m1ukeJ
7Vo8vGVDqxMjKi8Ky7CDu5ZaAOg0jxRbax4g1vRUtLu3u9HeJZ/OCbXEgLIyFWOQVXPOCMjI
zkDcryPw74gaP4/eLNOs7WO9t797ZJ7mK4X/AEUw2zZygBLDf8hPAViAeWAPQeMvB7eJdXnl
k02OWP7FBYpKrqrOk0/+kFsn5jDGqyRhgQHYsAzAYAOg8W+KLbwd4fl1q9tLu4tIXVZfsoQs
gY7QxDMuRuIHGTyOMZI5+O5uYvjxNYreXZs5fDn2prZrh2iEv2gJvVCdqnaoHAHc9Sc8f4/s
W0L4SeMILqyj08Xupo1vvuVdrphMihlGSxLQwo7FmLs5mJAABPWf83C/9yp/7d0Adhea3p1h
/aH2m48v+z7QXt18jHy4Tvw3A5/1T8DJ+XpyM5eu+MItD8QaZop0jUr271NJGtfsvkhXMY3O
pMki4IXB54ORgk5Aw7P/AInH9n45/t/VTrMm3jFnbbPIkTPTd5dluU5b96/C4+Sv8Q/Cl74r
8X+Go/7OvpNIt4ruK+urW5jiaMTxiMbcuGO3GWG0gqcYbJWgDvNLv21KwW6exu7Fy7o1vdqq
yKVcrztJBB25BBIIII61yerfFDTNG/4SD7VpOqn+wZYI7zYsJ+WbPluv7zlThf8AaG8ZH3sc
n8U/AOuazrmpX+haTHdDU9HjspDFJFGwmS6il3yb2XIMaBQRuPygEAYNU/FHhnxZrf8Awnv2
bwrfJ/wkP9n/AGTzLm0Gz7Pt3+ZiY4zjjGffFAHomq/EDTdKv9ZtfsOpXY0W3SfUJrWFWWDe
jOikFgzEheqqVXILFQGI3LTVftesajp32C+h+w+V/pM0O2G43ru/dNn5tvRumDXm/irw14i1
XWLnWtD0SfSdfkltks9Tt72OPMIWJpFvY95V1DFx8gct5QBG1V34fi3wNrupXHj2Kw8IyOms
3FnLp8oktVVXhJ82U5kBUvucggZO87sZNAHulYfi3xRbeDvD8utXtpd3FpC6rL9lCFkDHaGI
ZlyNxA4yeRxjJHiniLwLr2lWurXraHnSoZdbykUsO1LJ4le2+QuP3aShpQgGVYFgu4jMmn+D
fEl98KNag03SJPI1y30o2Nms8KANHFG01wwLhVEhUc53scblHWgD1/V/GljoNvrt1qVlqVva
aOkTPcNb/u7kyD5VhOfnIYhTnABIycc1saXftqVgt09jd2Ll3Rre7VVkUq5XnaSCDtyCCQQQ
R1rxPxN4K8Qax/wnP2TwXPH/AG5LYz2G+WzHkyRf612xKdrNuflck7znGTXSaJ4R0pvibJda
fZWkWl/Z7fUprJFj/wBDvYjNbom1AUxzOTtLESwkkrwGAPVKKKKACiiigAooooAKKKKAOH8d
fD6z1/wrrNnomnaVZavqOzfeNAIy+Jkkbe6qWOdme+Tiu0gMzW8TXEccc5QGRI3LqrY5AYgE
jPfAz6CpKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8
3vdW8av4yVbVp4NEfUI4RHJpTOwj8xUYmRc4U/ZrghiCFW4iJOHDQ+kUUAcvd33ixPFGnQQa
ZYnTXllWd1vHb9wBxI2YAEkB24UOc7mGCAZI8f8Atb4lTf6vQLG28/8A1fnKj/Zm/uybbn54
zuH71Pm/dv8AufmWvQKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii
igAooooAKKKKACuTj8O6kfivN4nlNounjR/7OiVZWaVm80SbmXaAo+8OGPQHvgdZRQAUUUUA
FFFFABRRRQBXvrCz1Ozks7+0gu7WTG+GeMSI2CCMqeDggH8KLGws9Ms47OwtILS1jzshgjEa
LkknCjgZJJ/GrFFABVe1sLOx8/7HaQW/nytPN5MYTzJG+87Y6scDJPJqxRQAUUUUAf/Z
--------------050008020208030801080109--


  • Prev by Date: Mathematica 5.1.1 benchmark
  • Next by Date: Re: Numerical solution of quadratic equations set.
  • Previous by thread: Re: General 3-state stochastic matrix (again)
  • Next by thread: Clear subscripted variables