Re: Optimal number of sheets
- To: mathgroup at smc.vnet.net
- Subject: [mg58344] Re: [mg58324] Optimal number of sheets
- From: "David Park" <djmp at earthlink.net>
- Date: Tue, 28 Jun 2005 21:56:42 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
John, Needs["DiscreteMath`Combinatorica`"] optimalSheets::usage = "optimalSheets[available][thickness] will return return the minimun number of sheet combinations of available sheet thicknesses that will give the overall thickness."; optimalSheets[available : {_Integer?Positive ..}][thickness_Integer?Positive] := Module[ {partitionsOfn = Cases[Partitions[thickness], {(Alternatives @@ available) ..}], minsheets}, minsheets = Min[Length /@ partitionsOfn]; Select[partitionsOfn, Length[#] == minsheets &]] optimalSheets[{1, 2, 3, 4, 7}][6] {{4, 2}, {3, 3}} optimalSheets[{1, 2, 3, 4, 7}][15] {{7, 7, 1}, {7, 4, 4}} optimalSheets[{1, 2, 3, 4, 7}][25] {{7, 7, 7, 4}} optimalSheets[{1, 3}][8] {{3, 3, 1, 1}} David Park djmp at earthlink.net http://home.earthlink.net/~djmp/ From: Erb, John [mailto:jerb at saint-lukes.org] To: mathgroup at smc.vnet.net Hello, On a given occasion, I wish to create different thicknesses of a material, ranging say, for example, from 1 cm to 25 cm, in increments of 1 cm. How can I, using Mathematica, determine the minimum number of sheets of material I need? The material comes in thicknesses of 1, 2, 3, 4, & 7 cm. Thank you, John C. Erb email: John_C_Erb at prodigy.net