Re: Normal Disappear Problem
- To: mathgroup at smc.vnet.net
- Subject: [mg55315] Re: Normal Disappear Problem
- From: "Valeri Astanoff" <astanoff at yahoo.fr>
- Date: Sat, 19 Mar 2005 04:45:16 -0500 (EST)
- References: <d1ecv2$evi$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Rick, In parametric mode there are often troublesome points. Notice your normal is not normalized : normal[u_, v_] := {Sin[v]^2 Cos[u], Sin[v]^2 Sin[u], Cos[u]^2 Cos[v] Sin[v]+Sin[u]^2 Cos[v] Sin[v]}; normal[u,v].normal[u,v]//Simplify Sin[v]^2 My way to tackle the exception (0,0) : unitNormal[u_, v_] := normal[u,v] / Sqrt[normal[u,v].normal[u,v]]; unitNormal[0,0] {Indeterminate,Indeterminate,Indeterminate} Series[unitNormal[u,v],{u,0,1},{v,0,1}]//Normal {v, u v, 1} % /. u -> 0 /. v -> 0 {0, 0, 1} Then let : unitNormal[0,0] = {0,0,1} and you're done. hth Valeri