Re: Mathematica max, min
- To: mathgroup at smc.vnet.net
- Subject: [mg55583] Re: Mathematica max, min
- From: diasydias <e at e.com>
- Date: Wed, 30 Mar 2005 03:21:30 -0500 (EST)
- References: <d23439$lgq$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Thank you Bob :-) Re: Mathematica max, min Posted: Mar 27, 2005 2:48 AM Plain Text Reply f[x_,y_] := 3*x^4+3*x^2*y-y^3; (mmpts={x,y,f[x,y]}/. Union[Sort/@Solve[Thread[ (D[f[x,y],#]&/@{x,y})==0], {x,y}]]) {{-(1/2), -(1/2), -(1/16)}, {0, 0, 0}, {1/2, -(1/2), -(1/16)}} Show[{Plot3D[f[x,y], {x,-3/4,3/4},{y,-3/4,1/4}, PlotRange->All, DisplayFunction->Identity], Graphics3D[{AbsolutePointSize[6],Red, Point/@mmpts}]}, DisplayFunction->$DisplayFunction]; It is somewhat easier to see if you zoom-in on each point Show[{Plot3D[f[x,y], {x,#[[1]]-0.05,#[[1]]+0.05}, {y,#[[2]]-0.05,#[[2]]+0.05}, PlotRange->All, DisplayFunction->Identity], Graphics3D[{AbsolutePointSize[6],Red, Point[#]}]}, DisplayFunction->$DisplayFunction]&/@ mmpts; Bob Hanlon