Re: Re: Re: NSolve Vs. Elliptic Integral
- To: mathgroup at smc.vnet.net
- Subject: [mg62564] Re: [mg62532] Re: [mg62500] Re: [mg62471] NSolve Vs. Elliptic Integral
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 28 Nov 2005 00:57:50 -0500 (EST)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
NIntegrate[f[x, m], {x, ArcSin[0.003/Sin[m]], Pi/2}] taken by itself contains a non-numeric (i.e., m in the integrand and the lower limit) and cannot be numerically evaluated. FindRoot provides various numeric values of m to the embedded NIntegrate. Since the functions are periodic it is easy to obtain multiple solutions with FindRoot. Evaluate the following: Needs["Graphics`"]; Clear[f,g]; f[x_,m_]:=Sqrt[(1+0.176*Sin[m]^2*Sin[x]^2)* (1+1.018*Sin[m]^2*Sin[x]^2)/(1-Sin[m]^2*Sin[x]^2)]; g[m_]:=0.159*Sqrt[1/(-9*10^(-6)+Sin[m]^2)]; Off[Plot::plnr]; k=3; Plot[{NIntegrate[f[x,m],{x,ArcSin[0.003/Sin[m]],Pi/2}],g[m]}, {m,-1/2,k*Pi+1/2},PlotStyle->{Blue,Red}, Frame->True,Axes->False,ImageSize->432, FrameTicks->{Automatic,Automatic,PiScale,Automatic}, PlotPoints->Ceiling[33k+9], PlotRange->{-0.1,10.1}]; Off[NIntegrate::nlim]; soln=m/.FindRoot[ NIntegrate[f[x, m], {x, ArcSin[0.003/Sin[m]], Pi/2}] == g[m], {m, #}]& /@ Flatten[Table[{-0.1, 0.1} + n*Pi, {n, 0, k}]] Table[Partition[soln, 2][[n+1]] - n*Pi, {n, 0, k}] Bob Hanlon > > From: Pratik Desai <pdesai1 at umbc.edu> To: mathgroup at smc.vnet.net > Date: 2005/11/27 Sun AM 02:40:09 EST > Subject: [mg62564] [mg62532] Re: [mg62500] Re: [mg62471] NSolve Vs. Elliptic Integral > > Bob Hanlon wrote: > > >NSolve is intended primarily for polynomials (see Help browser). Use > >FindRoot. > > > >Clear[f,g]; > > > >f[x_,m_]:=Sqrt[(1+0.176*Sin[m]^2*Sin[x]^2)* > > (1+1.018*Sin[m]^2*Sin[x]^2)/(1-Sin[m]^2*Sin[x]^2)]; > > > >g[m_]:=0.159*Sqrt[1/(-9*10^(-6)+Sin[m]^2)]; > > > >FindRoot[ > > NIntegrate[f[x,m],{x,ArcSin[0.003/Sin[m]],Pi/2}]==g[m], > > {m,1}] > > > >{m -> 0.102762168294469} > > > >Plot[{NIntegrate[f[x,m],{x,ArcSin[0.003/Sin[m]],Pi/2}],g[m]}, > > {m,0.05,.15},PlotStyle->{Blue,Red},Frame->True,Axes->False]; > > > > > >Bob Hanlon > > > > > > > >>From: "nilaakash at gmail.com" <nilaakash at gmail.com> To: mathgroup at smc.vnet.net > >> > > > >>Date: 2005/11/25 Fri AM 02:25:24 EST > >>Subject: [mg62564] [mg62532] [mg62500] [mg62471] NSolve Vs. Elliptic Integral > >> > >>Dear Friends, > >> I am facing a problem to NSolve an Elliptic > >>Integral like that. > >> > >>f[x_] := Sqrt[(1 + > >> 0.176*Sin[m]^2*Sin[x]^2)*(1 + 1.018*Sin[m]^2*Sin[x]^2)/(1 - > >> Sin[m]^2*Sin[x]^2)] > >> > >>g[m] = 0.159*Sqrt[1/(-9*10^(-6) + Sin[m]^2)]; > >> > >>NSolve[NIntegrate[f[x], {x, ArcSin[0.003/Sin[m]], Pi/2}] == g[m], m] > >> > >> > >>Here I want to get an "m" value such that integration value = g[m]. > >> > >>This NSolve shows problem, please could any body tell me how to get > >>exact m value. > >> > >>Thanks. > >> > >>nilaakash > >> > >> > >> > >> > > > > > > > Hi Bob, > > What version of Mathematica are you using? > Because it gives me the result you reported but when I tried to just do > the NIntegrate it does not evaluate. Maybe I am missing something?? > Is this a functionality of find root (if that is true, that is pretty > interesting) or something else > > Please advise > > Pratik > > -- > Pratik Desai > Graduate Student > UMBC > Department of Mechanical Engineering > Phone: 410 455 8134 > > >