Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2005
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Eliminating parameters

  • To: mathgroup at smc.vnet.net
  • Subject: [mg61572] Re: [mg61557] Eliminating parameters
  • From: pacoga at ctv.es
  • Date: Sat, 22 Oct 2005 03:24:12 -0400 (EDT)
  • References: <200510220436.AAA06279@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

Thank you for your answer,

I have

 ptP = {a*((-c^2)*v*(v + w)^2 - w*((-a^2)*v*(v + w) + b^2*(v + 
w)^2 + 
        2*a*v*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))])), 
    2*a^3*v^2*w - 2*a*v*(v + w)*(c^2*v + b^2*w) + 
     a^2*v*w*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))] - 
(2*v + w)*(c^2*v + b^2*w)*
      Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))], 
    2*a^3*v*w^2 - 2*a*w*(v + w)*(c^2*v + b^2*w) + 
     a^2*v*w*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))] - 
(v + 2*w)*(c^2*v + b^2*w)*
      Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))]} /. {v -> 
1 - t, w -> t}

(Here v and w are homogenus barycentric coordinates and we can suppose that v+w=1.)  

Then I have tried

 Eliminate[{X == ptP[[1]], Y == ptP[[2]], Z == ptP[[3]]}, {t}]; 

I have tried it without substituting v and w too. 

Sincerely,

Francisco Javier, from Spain.

--------------------------------------
Francisco Javier Garc=EDa Capit=E1n
IES =C1lvarez Cubero (Priego de C=F3rdoba)
pacoga at ctv.es
--------------------------------------



  • Prev by Date: Re: boolean function, interpolation
  • Next by Date: Re: Baffling change to partial derivative in version 5.1
  • Previous by thread: Re: Eliminating parameters
  • Next by thread: Re: Eliminating parameters