MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Eliminating parameters


Thank you for your answer,

I have

 ptP = {a*((-c^2)*v*(v + w)^2 - w*((-a^2)*v*(v + w) + b^2*(v + 
w)^2 + 
        2*a*v*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))])), 
    2*a^3*v^2*w - 2*a*v*(v + w)*(c^2*v + b^2*w) + 
     a^2*v*w*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))] - 
(2*v + w)*(c^2*v + b^2*w)*
      Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))], 
    2*a^3*v*w^2 - 2*a*w*(v + w)*(c^2*v + b^2*w) + 
     a^2*v*w*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))] - 
(v + 2*w)*(c^2*v + b^2*w)*
      Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))]} /. {v -> 
1 - t, w -> t}

(Here v and w are homogenus barycentric coordinates and we can suppose that v+w=1.)  

Then I have tried

 Eliminate[{X == ptP[[1]], Y == ptP[[2]], Z == ptP[[3]]}, {t}]; 

I have tried it without substituting v and w too. 

Sincerely,

Francisco Javier, from Spain.

--------------------------------------
Francisco Javier Garc=EDa Capit=E1n
IES =C1lvarez Cubero (Priego de C=F3rdoba)
pacoga at ctv.es
--------------------------------------



  • Prev by Date: Re: boolean function, interpolation
  • Next by Date: Re: Baffling change to partial derivative in version 5.1
  • Previous by thread: Re: Eliminating parameters
  • Next by thread: Re: Eliminating parameters