Re: Recursion problem in SymbolicSum
- To: mathgroup at smc.vnet.net
- Subject: [mg60698] Re: [mg60693] Recursion problem in SymbolicSum
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sun, 25 Sep 2005 02:36:09 -0400 (EDT)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
This version does not have a problem. $Version 5.2 for Mac OS X (June 20, 2005) PoissonProb[mu_,k_]=Exp[-mu] mu^k/k!; (expr= Sum[PoissonProb[mu,k] (k+1-9)/(k+1),{k,9,Infinity}])/. mu->1.05 1.8235340949601087*^-7 Sum[PoissonProb[1.05,k](k+1-9)/(k+1),{k,9,Infinity}] 1.823534118168531*^-7 You could also try (expr//Simplify)/.mu->1.05 1.8235341138425525*^-7 (expr//FullSimplify)/.mu->1.05 1.8235341128410885*^-7 expr/.mu->105/100//N 1.8235341192068037*^-7 expr/.mu->105/100//Simplify//N 1.8235341148198358*^-7 Bob Hanlon > > From: djw1005 at cus.cam.ac.uk (D.J. Wischik) To: mathgroup at smc.vnet.net > Date: 2005/09/24 Sat AM 02:55:35 EDT > Subject: [mg60698] [mg60693] Recursion problem in SymbolicSum > > I was surprised to get problems (recursion limit exceeded) when executing > a symbolic sum. The terms in the sum depend on a parameter mu. When I > leave mu unspecified and calculate the sum and then substitute a numerical > value for mu, I get the right answer. When I specify mu in the sum, the > symbolic sum fails. (The sum definitely exists and is finite.) I would be > grateful if anyone could explain this behaviour. > > PoissonProb[mu_, k_] = Exp[-mu] mu^k / k!; > > Sum[PoissonProb[mu, k] (k + 1 - 9)/(k + 1), {k, 9, Infinity}] /. > {mu -> 1.05} > > [returns the answer 1.82353 * 10^(-7) as expected] > > Sum[PoissonProb[1.05, k](k + 1 - 9)/(k + 1), {k, 9, Infinity}] > > [ $RecursionLimit::reclim: Recursion depth of 256 exceeded. > $IterationLimit::itlim: Iteration limit of 4096 exceeded. > and then it returns the following. ] > > \!\(0.34993774911115527`\ \((4.298654386611213`*^-6 - > 7.999999999999789`\ \ > Hold[If[MatchQ[Numerator[SymbolicSum`InfiniteDump`expr1$214], > SymbolicSum`a$_ \ > + SymbolicSum`b$_ /; \(! > FreeQ[SymbolicSum`a$, > K$94]\) && \(! FreeQ[SymbolicSum`b$, K$94]\)], \ > \((SymbolicSum`InfiniteDump`infinitesum[#1, K$94, 0] &)\) /@ > Expand[SymbolicSum`InfiniteDump`expr1$214], > SymbolicSum`InfiniteDump`HypergeometricSeries[ > 1, SymbolicSum`InfiniteDump`expr1$214, \ > SymbolicSum`InfiniteDump`expr2$214, K$94, 0, SymbolicSum`eps $214]]])\)\) > > Damon. > >