Re: simplify a trig expression
- To: mathgroup at smc.vnet.net
- Subject: [mg65433] Re: [mg65415] simplify a trig expression
- From: "Carl K. Woll" <carlw at wolfram.com>
- Date: Sat, 1 Apr 2006 05:38:52 -0500 (EST)
- References: <200603311109.GAA15029@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Murray Eisenberg wrote: > A direct substitution (with paper and pencil) gives that the integral of > Cos[x]/(Sin[x] + 1) is Log[Sin[x] + 1]. This is valid provided Sin[x] > is not -1. > > Mathematica gives: > > Integrate[Cos[x]/(Sin[x] + 1), x] > 2 Log[Cos[x/2] + Sin[x/2]] > > Is there some simple way to coerce the latter Mathematica-supplied > result into the paper-and-pencil answer? > > The closest I could get is: > > Log[TrigExpand[Expand[(Cos[x/2] + Sin[x/2])^2]]] /. > {Sin[x/2] -> Sqrt[(1 - Cos[x])/2], > Cos[x/2] -> Sqrt[(1 + Cos[x])/2]} > Log[1 + Sqrt[1 - Cos[x]]*Sqrt[1 + Cos[x]]] > > Am I not seeing some easier TrigExpand or TrigReduce method? > Doesn't TrigReduce do whatyou want? In[2]:= Log[TrigReduce[(Cos[x/2] + Sin[x/2])^2]] Out[2]= Log[1+Sin[x]] Carl Woll WolframResearch