Re: problems with sum functions/ factoring the factorial-> I got it to work!
- To: mathgroup at smc.vnet.net
- Subject: [mg65878] Re: problems with sum functions/ factoring the factorial-> I got it to work!
- From: Roger Bagula <rlbagulatftn at yahoo.com>
- Date: Thu, 20 Apr 2006 05:15:07 -0400 (EDT)
- References: <e1sns1$86r$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
For those of you thought this too hard to reply to ... The second Sum just makes it too long for Mathematica. I instead used the exponential complex type Identities which involved only ddoing the sum twice and reduced the number of terms summed. The Conpositorial type harmonic sine cosine functions gives a neat loop! It is a truely new set of functions; unknown until now, I think. Mathematica: Çlear[f, g, cf, p] f[n_] := If[PrimeQ[n] == True, 1, n] cf[0] = 1; cf[n_Integer?Positive] := cf[n] = f[n]*cf[n - 1] g[n_] := If[PrimeQ[n] == True, n, 1] p[0] = 1; p[n_Integer?Positive] := p[n] = g[n]*p[n - 1] Clear[Ce, Pe, Ce1, Pe1] Ce[x_] := 1 + NSum[p[n]*x^n/n!, {n, 1, 25}]; Pe[x_] := 1 + NSum[cf[n]*x^n/n!, {n, 1, 25}]; CSin[x_] := Re[(Ce[I*x] - Ce[-I*x])/(2*I)] PSin[x_] := Re[(Pe[I*x] - Pe[-I*x])/(2*I)] CCos[x_] := Re[(Ce[I*x] + Ce[-I*x])/(2)] PCos[x_] := Re[(Pe[I*x] + Pe[-I*x])/(2)] Plot[CSin[x], {x, -Pi, Pi}, Axes -> False] Plot[CCos[x], {x, -Pi, Pi}, Axes -> False] Plot[PSin[x], {x, -Pi, Pi, Axes -> False}] Plot[PCos[x], {x, -Pi, Pi, Axes -> False}] g1 = ParametricPlot[{CSin[x], CCos[x]}, {x, -Pi, Pi}, Axes -> False] g2 = ParametricPlot[{PSin[x], PCos[x]}, {x, -Pi, Pi}, Axes -> False] Show[{g1, g2}] Roger Bagula wrote: > I have no problem constructing the Primorial or Compositorial functions > that factor the factorial as: > cf[n]*p[n]=n! > But trying to get the sine and cosine constructed functions to plot > seems to be a problem here: > Clear[f, g, cf, p, CeS, CeC, PeS, PeC] > f[n_] := If[PrimeQ[n] == True, 1, n] > cf[0] = 1; > cf[n_Integer?Positive] := cf[n] = f[n]*cf[n - 1] > g[n_] := If[PrimeQ[n] == True, n, 1] > p[0] = 1; > p[n_Integer?Positive] := p[n] = g[n]*p[n - 1] > Ce = 1 + Sum[1/cf[n], {n, 1, 1000}]; > N[%, 100] > Pe = 1 + Sum[1/p[n], {n, 1, 1000}]; > N[%, 100] > CeS[x_] := 1 + NSum[(-1)^n*p[2*n + 1]*x^(2*n + 1)/(2*n + 1)!, {n, 1, 100}]; > CeC[x_] := 1 + NSum[(-1)^n*p[2*n]*x^(2*n)/(2*n)!, {n, 1, 100}]; > ParametricPlot[{CeC[x], CeS[x]}, {x, 0, 2*Pi}] > PeS[x_] := 1 + NSum[(-1)^n*cf[2*n + 1]*x^(2*n + 1)/(2*n + 1)!, {n, 1, 100}]; > PeC[x_] := 1 + NSum[(-1)^n*cf[2*n]*x^(2*n)/(2*n)!, {n, 1, 100}]; > ParametricPlot[{PeC[x], PeS[x]}, {x, 0, 2*Pi}] > > Alernative functions: > CeS1[x_] := 1 + NSum[(-1)^n*x^(2*n + 1)/cf[2*n + 1], {n, 1, 100}]; > CeC1[x_] := 1 + NSum[(-1)^n*x^(2*n)/cf[2*n], {n, 1, 100}]; > ParametricPlot[{CeC[x], CeS[x]}, {x, 0, 2*Pi}] > PeS1[x_] := 1 + NSum[(-1)^n*x^(2*n + 1)/p[2*n + 1], {n, 1, 100}]; > PeC1[x_] := 1 + NSum[(-1)^n*x^(2*n)/p[2*n], {n, 1, 100}]; > ParametricPlot[{PeC1[x], PeS1[x]}, {x, 0, 2*Pi}] > > In addition this function seem to come up with the wrong sign: > Pe[x_] := 1 + NSum[cf[n]*x^n/n!, {n, 1, 100}]; > Plot[Pe[x], {x, 0, 5}] > > Or alternatively: > Pe1[x_] := 1 + NSum[x^n/p[n], {n, 1, 100}]; > Plot[Pe1[x], {x, 0, 5}] > > Ce*Pe~ 5*E (low) > Roger >