MathGroup Archive 2006

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Using implicit information about row indices


Mark,

The following could use some polishing, but should give you the basic
idea:

In[1]:=
r=5;
L={{{1,a},{2,b}},{{1,c},{2,d},{3,e},{4,f}},{{2,g},{3,h},{4,i}},{{3,k},{4,
          l},{5,m}},{{4,n},{5,p}}};
(Evaluate@Table[M[#1,j], {j,#2[[1,1]],Last[#2][[1]]}]=#2[[All,2]])&@@@
    Thread[{Range[r],L}];
M[i_,j_]=0;

In[5]:=
Table[M[w,j],{w,5},{j,5}]
Out[5]=
{{a,b,0,0,0},{c,d,e,f,0},{0,g,h,i,0},{0,0,k,l,m},{0,0,0,n,p}}

dkr


  • Prev by Date: Re: x=2;Composition[f,FindMinimum][x+1,{x,a}]
  • Next by Date: Re: Using implicit information about row indices
  • Previous by thread: Re: x=2;Composition[f,FindMinimum][x+1,{x,a}]
  • Next by thread: Re: Using implicit information about row indices