Re: How do I create a parametric expression?

• To: mathgroup at smc.vnet.net
• Subject: [mg68572] Re: How do I create a parametric expression?
• From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
• Date: Wed, 9 Aug 2006 23:57:20 -0400 (EDT)
• Organization: The Open University, Milton Keynes, UK
• References: <ebc7b6\$l58\$1@smc.vnet.net>
• Sender: owner-wri-mathgroup at wolfram.com

```axlq wrote:
> I'm trying to figure out how to simplify a large expression so that it's
> expressed in terms of a sub-expression that's factored into the larger
> one.
>
> My expression looks like this:
>
> -((1 + 2*n)*((a^4*k^2 + a^2*(-1 + k^2*(q - z)^2) + 2*(q - z)^2)
>    *Cos[k*Sqrt[a^2 + (q - z)^2]] - k*(a^2 - 2*(q - z)^2)
>      *Sqrt[a^2 + (q - z)^2]*Sin[k*Sqrt[a^2 + (q - z)^2]])
>        *Sin[((1 + 2*n)*Pi*z)/L])/(8*Pi*w*(a^2 + (q - z)^2)^(5/2))
>
> Now, I *know* there are places in there were Sqrt[a^2+(q-z)^2] occurs,
> either by itself or raised to various powers.  If I want to define
>
> R:=Sqrt[a^2+(q-z)^2]
>
> ...then how can I make Mathematica re-state my expression in terms
> of R?  The ReplaceRepated[] function doesn't seem to do the job.
>
> I need to do this because I am translating the expressions into
> Visual Basic code for an Excel application, and it would be nice to
> find groupings of terms repeated throughout the expression that I
> need to calculate only once.
>
> -Alex
>
Hi Alex,

Use Replace [1] with level specification [2]:

expr = -((1 + 2*n)*((a^4*k^2 + a^2*(-1 + k^2*(q - z)^2) + 2*(q -
z)^2)*Cos[k*Sqrt[a^2 + (q - z)^2]] - k*(a^2 - 2*(q - z)^2)*Sqrt[a^2 + (q
- z)^2]*Sin[k*Sqrt[a^2 + (q - z)^2]])*Sin[((1 +
2*n)*Pi*z)/L])/(8*Pi*w*(a^2 + (q - z)^2)^(5/2))

Replace[expr, Sqrt[a^2 + (q - z)^2] -> R, {0, Infinity}]

--> -(((1 + 2*n)*((a^4*k^2 + a^2*(-1 + k^2*(q - z)^2) + 2*(q -
z)^2)*Cos[k*R] - k*R*(a^2 - 2*(q - z)^2)*Sin[k*R])*Sin[((1 +
2*n)*Pi*z)/L])/(8*Pi*w*(a^2 + (q - z)^2)^(5/2)))

Why level specifications are important? Compare

Cases[expr, Sqrt[a^2 + (q - z)^2]]
--> {}

vs

Cases[expr, Sqrt[a^2 + (q - z)^2], {0, Infinity}]
--> {Sqrt[a^2 + (q - z)^2], Sqrt[a^2 + (q - z)^2], Sqrt[a^2 + (q - z)^2]}

Best regards,
Jean-Marc

[1] http://documents.wolfram.com/mathematica/functions/Replace

[2] _The Mathematica Book_, "A.3.6 Level Specifications",
http://documents.wolfram.com/mathematica/book/section-A.3.6

```

• Prev by Date: Re: How do I create a parametric expression?
• Next by Date: Re: How do I create a parametric expression?
• Previous by thread: Re: How do I create a parametric expression?
• Next by thread: Re: How do I create a parametric expression?