[Date Index]
[Thread Index]
[Author Index]
Re: How do I create a parametric expression?
*To*: mathgroup at smc.vnet.net
*Subject*: [mg68579] Re: How do I create a parametric expression?
*From*: Daniel Lichtblau <danl at wolfram.com>
*Date*: Wed, 9 Aug 2006 23:57:42 -0400 (EDT)
*References*: <200608090819.EAA21141@smc.vnet.net>
*Sender*: owner-wri-mathgroup at wolfram.com
axlq wrote:
> I'm trying to figure out how to simplify a large expression so that it's
> expressed in terms of a sub-expression that's factored into the larger
> one.
>
> My expression looks like this:
>
> -((1 + 2*n)*((a^4*k^2 + a^2*(-1 + k^2*(q - z)^2) + 2*(q - z)^2)
> *Cos[k*Sqrt[a^2 + (q - z)^2]] - k*(a^2 - 2*(q - z)^2)
> *Sqrt[a^2 + (q - z)^2]*Sin[k*Sqrt[a^2 + (q - z)^2]])
> *Sin[((1 + 2*n)*Pi*z)/L])/(8*Pi*w*(a^2 + (q - z)^2)^(5/2))
>
> Now, I *know* there are places in there were Sqrt[a^2+(q-z)^2] occurs,
> either by itself or raised to various powers. If I want to define
>
> R:=Sqrt[a^2+(q-z)^2]
>
> ...then how can I make Mathematica re-state my expression in terms
> of R? The ReplaceRepated[] function doesn't seem to do the job.
>
> I need to do this because I am translating the expressions into
> Visual Basic code for an Excel application, and it would be nice to
> find groupings of terms repeated throughout the expression that I
> need to calculate only once.
>
> -Alex
This is probably best done with a form of algebraic replacement. I seem
to revisit this from time to time, for example see the URLs below. But
each time the code gets a bit longer.
http://forums.wolfram.com/mathgroup/archive/2005/Apr/msg00273.html
http://forums.wolfram.com/mathgroup/archive/2002/Jan/msg00354.html
The code in those threads will not go inside transcendental functions.
So below is a modification that will.
replacementFunction[expr_,rep_,vars_] := With[
{num=Numerator[expr],den=Denominator[expr],hed=Head[expr]},
If [PolynomialQ[num,vars] && PolynomialQ[den,vars],
PolynomialReduce[num, rep, vars][[2]] /
PolynomialReduce[den, rep, vars][[2]]
, (* else *)
If [Head[hed]===Symbol&&MemberQ[Attributes[hed],NumericFunction],
Map[replacementFunction[#,rep,vars]&, expr]
, (* else *)expr]
]
]
Your example:
expr = -((1 + 2*n)*((a^4*k^2 + a^2*(-1 + k^2*(q - z)^2) + 2*(q - z)^2)*
Cos[k*Sqrt[a^2 + (q - z)^2]] - k*(a^2 - 2*(q - z)^2)*
Sqrt[a^2 + (q - z)^2]*Sin[k*Sqrt[a^2 + (q - z)^2]])*
Sin[((1 + 2*n)*Pi*z)/L])/(8*Pi*w*(a^2 + (q - z)^2)^(5/2));
It appears to work best here if we do not encapsulate the thing we
replace in a square root.
In[20]:= InputForm[replacementFunction[expr, a^2+(q-z)^2-R^2, {a,q,z}]]
Out[20]//InputForm=
-((1 + 2*n)*((-R^2 + k^2*R^4 + q^2*(3 - k^2*R^2) +
q*(-6 + 2*k^2*R^2)*z + (3 - k^2*R^2)*z^2)*Cos[k*Sqrt[R^2]] -
k*Sqrt[R^2]*(-3*q^2 + R^2 + 6*q*z - 3*z^2)*Sin[k*Sqrt[R^2]])*
Sin[((Pi + 2*n*Pi)*z)/L])/(8*Pi*(R^2)^(5/2)*w)
Daniel Lichtblau
Wolfram Research
Prev by Date:
**Re: need mathematica's help for exploring a certain type of mapping**
Next by Date:
**How to package an array generating code**
Previous by thread:
**Re: How do I create a parametric expression?**
Next by thread:
** Re: How do I create a parametric expression?**
| |