Re: calculate Recurrence Equations

• To: mathgroup at smc.vnet.net
• Subject: [mg68795] Re: calculate Recurrence Equations
• From: Peter Pein <petsie at dordos.net>
• Date: Fri, 18 Aug 2006 03:12:57 -0400 (EDT)
• References: <ec1a1u\$omo\$1@smc.vnet.net>
• Sender: owner-wri-mathgroup at wolfram.com

```Frank Hechtner schrieb:
> hi,
>
> i?m in trouble with my Recurrence Equations:
>
> i?ve defined the following function
>
> anteil[0] = 1
> anteil[n_] := anteil[n - 1] + (anteil[n - 1]*5 - 1)/100
>
> i want mathematica to calculate the values for anteil[30] and so on.
>
> Unfortunately mathematica needs for this calculation over 2 hours (and
> is still running, athlon x2 4600, 2 gb ram).
>
> I don?t see where are the difficulties for mathematica...
>
>
> frank
>

Hi Frank,

Mathematika doesn't remeber the values it has alraedy calculated. So
anteil[30] leads to 2^30 ~ 10^9 calls to anteil[]. If you store the
calculated values, the calls to anteil[] are 31:

In[1]:=
anteil[0] = 1;
anteil[n_] := anteil[n] = anteil[n - 1] + (anteil[n - 1]*5 - 1)/100;
AbsoluteTiming[anteil[30]]
Out[3]=
{0.*Second,
4909085745117164100520051333566036654601/1342177280000000000000000000000000000000}

But I prefer using RSolve[]:

In[1]:=
<< "DiscreteMath`RSolve`"
anteil = a /. First[RSolve[{a[0] == 1,
a[n] == a[n - 1] + (a[n - 1]*5 - 1)/100}, a, n]]
anteil[30]
N[%]

Out[2]=
Function[{n}, (1/5)*(1 + 4^(1 - n)*(21/5)^n)]
Out[3]=
4909085745117164100520051333566036654601/
1342177280000000000000000000000000000000
Out[4]=
3.6575539001205297

HTH,
Peter

```

• Prev by Date: Re: position lists
• Next by Date: Re: word problem
• Previous by thread: Re: calculate Recurrence Equations
• Next by thread: Re: calculate Recurrence Equations